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1 Introduction

In the past few years, deep neural networks have made breakthroughs in a wide
variety of everyday technologies, such as speech-recognition on our smartphones,
machine translation and in image recognition. The success of deep learning is built
upon the availability of a vast volume of data and as their sizes grow larger, it can
take weeks to train deeper neural networks to the desired accuracy. Fortunately, we
are not restricted to a single machine and research has been conducted on enabling
efficient distributed training of neural networks.

There are dozens of open source machine learning libraries that can be used to
develop deep learning applications. Here, we focus on TensorFlow, Google’s open
source machine learning framework. There are two main reasons why we analyze
TensorFlow: first, TensorFlow offers a flexible architecture allows you to deploy
computation to one or more CPUs or GPUs in a desktop, server, or mobile device
with a single API. Second, most CSCS clients use TensorFlow as their deep learning
framework.

In this report, we analyze the performance of distributed training in TensorFlow (in
terms of number of images trained per second) in different systems and compare our
results with the benchmarks available in TensorFlow’s website.

The remainder of this report is organized as follows. We first give a brief overview of
TensorFlow, present its architecture in distributed training and explain how to easily
extend existing single-machine code to run on multiple nodes. We then introduce
the systems on which we will run our benchmarks and give some pointers on how to
set them up. Next, we describe the scripts we have written to easily run TensorFlow
in a distributed environment, with a focus on Piz Daint which runs with Slurm
Workload Manager. A case study on MNIST is presented to show how to extend
a single-node TensorFlow application to run across multiple nodes. After that, we
detail our methodology and discuss the results that we obtain when scaling out to
128 GPUs. Finally, we present directions for future work and conclude this report.
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2 TensorFlow

TensorFlow [9] is an open source software library for numerical computation using
data flow graphs. Nodes in these graphs represent mathematical operations, while
multidimensional arrays (tensors) move across the edges between them; hence the
name. An example of a computational graph is shown in Figure [T}
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Figure 1: Computational graph for a regularized Multiclass SVM loss [3].

In TensorFlow, you firstly build the computational graph and then run instances
of that graph. By doing so, the graph is created only once and the framework can
apply some optimizations for you before it runs.

To make this more concrete, let’s consider the linear regression example described
in Figure 2] The corresponding TensorFlow code is shown in Listing [T}
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Figure 2: Linear regression computational graph.
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import numpy as np
import tensorflow as tf

4 # #
5 # LOAD DATA #
6 # #
7 # Generate some data as y=3*Xx + noise

s N_SAMPLES = 10

o X_in = np.arange(N_SAMPLES)

10 y_in = 3%x_in + np.random.randn(N_SAMPLES)

11 data = list(zip(x_in, y_in))

12

13 # #
14 # BUILD GRAPH #
15 # #
16 simple_graph = tf.Graph()

17 with simple_graph.as_default():

1s  # Generate placeholders for input x and output y

19 x = tf.placeholder(tf.float32, name='x")

20 y = tf.placeholder(tf.float32, name="y")

21

22 # Create weight and bias, initialized to 0

23 w = tf.Variable(0.0, name='weight’)

24« b = tf.Variable(0.0, name='bias’)

25

26 # Build model to predict y

27 y_predicted = x * w + b

28

20 # Use the square error as the loss function

30 loss = tf.square(y — y_predicted, name='loss’)

31

32 # Use gradient descent to minimize loss

33 optimizer = tf.train.GradientDescentOptimizer(learning_rate=0.001)

3¢ train = optimizer.minimize(loss)

35

36 # #
a7 # EXECUTE GRAPH #
38 # #

39

40

# Run training for N_EPOCHS epochs
N_EPOCHS = 5
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with tf.Session(graph=simple_graph) as sess:
# Initialize the necessary variables (w and b here)
sess.run(tf.global_variables_initializer())

# Train the model
for 1 in range(N_EPOCHS):
total_loss = 0
for x_,y_ in data:
# Session runs train operation and fetches values of loss
_, L_value = sess.run([train, loss], feed_dict={x: x_, y: y_})
total_loss += 1_value
print(’Epoch {0}: {1}'.format(i, total_loss/N_SAMPLES))

Listing 1: Linear regression in TensorFlow.

In the previous snippet, when we build the data flow graph, every variable (such
as x, w, loss, and train) is not assigned any value but it is actually an operation
that is added to the graph. Specifically, a tf.placeholder represents a container
for future values that will be loaded at run time, a tf.Variable instead represents
a tensor that will be modified by the learning algorithm during the optimization
phase, while the other ones are mathematical operations, as shown in Figure [2|

We start an execution by opening a tf.Session, to which we pass the graph defined
before. Here, we firstly initialize our tf.Variables by assigning them their initial
value, and then train our model for N_EPOCHS epochs E| by passing each time an
input and an output sample via feed_dict in sess.run(). sess.run() evaluates
the list of operations that are passed in its first argument. It does so by computing
only the nodes in the graph these operations depend on and returns their values at
the end of the evaluation.

The resulting linear model is shown in Figure [3]

! An epoch is one complete presentation of the training data set to a machine learning model.
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Figure 3: Linear model learned with the example code in Listing

2.1 Distributed training

As neural networks become larger, it can take weeks to train one of them to achieve
the desired accuracy. It is then of primary importance to distribute the training of
these deep neural networks at a massive scale and reduce the training time to hours.
TensorFlow offers a large degree of flexibility in the placement of graph operations,
allowing easy implementations for parallel computation across multiple workers.

When splitting the training of a neural network across multiple nodes, the most
common strategy is data parallelism, where each node has an instance of the model
and reads different training samples.

When using TensorFlow, this is achieved with the so-called “between-graph replica-
tion” setting. In this context, processes have one of two roles: Parameter Servers
(PS) or Workers. The former ones host the trainable variables and update them
with the values sent by the Workers. Workers, on the other hand, run the model,
send their local gradients to the PSs and receive the updated variables back.

In doing so, it is essential that all the Workers send their updates of each variable
to the same PSs. To ensure correct device placement of each variable, TensorFlow
offers replica_device_setter, which provides a deterministic method for variable
allocation, ensuring that the variables reside on the same devices.
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Given that each Worker runs the same model, the only high-level changes required
in a parallel implementation are the definition of the cluster of nodes and the role
of each of them (Parameter Server/Worker). The following code snippet (from [4])
shows how to specify such configuration in TensorFlow. Note that such a script
would be executed on each machine in the cluster, but with different arguments.

import sys
import tensorflow as tf

# Specify the cluster’s architecture
cluster = tf.train.ClusterSpec({’'ps’: [’192.168.1.1:1111"7],
'worker’: ['192.168.1.2:1111’,
'192.168.1.3:1111"]

})

# Parse command—line to specify machine

job_type = sys.argv[l] # job type: "worker" or "ps"

task_idx = sys.argv[2] # index job in the worker or ps list
# as defined in the ClusterSpec

5 # Create TensorFlow Server. This is how the machines communicate.

server = tf.train.Server(cluster, job_name=job_type, task_index=task_idx)

# Parameter server is updated by remote clients.
# Will not proceed beyond this if statement.
if job_type == 'ps’:
server.join()
else:
# Workers only
with tf.device(tf.train.replica_device_setter(
worker_device='/job:worker/task: '+task_idx,
cluster=cluster)):
# Build your model here as if you only were using a single machine

with tf.Session(server.target):
# Train your model here

Listing 2: Distributed TensorFlow skeleton.

The first step in running distributed TensorFlow is to define the architecture of the
cluster using tf.train.ClusterSpec, where the IP addresses and ports of all the
processes for each role are provided.
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Next, the script determines its job type (or role) and its index among all the pro-
cesses with the same job type. This is typically achieved by passing command-line
arguments to the script, which are then parsed. Here, job_type specifies whether
the node is running a Parameter Server or a Worker task, whereas task_idx speci-
fies the process’s index into its task list. An important remark regarding task_idx
is that the list of nodes per role is interpreted as a sorted array. That is, you cannot
arbitrarily set the task_idx of a given process; instead, this must reflect the position
of that process in the original PS or Worker list specified in tf.train.ClusterSpec.
For instance, the script for Worker 192.168.1.2:1111 must be launched setting its
task_idx to 0 as it is the first Worker in the list.

The next step is to use this information to create a TensorFlow Server, which allows
this process to communicate with any other server in the same cluster and partici-
pate in distributed training.

If the node is a Parameter Server, it simply joins its threads and waits for them to
terminate. While it may seem counterintuitive that there is no PS-specific code, the
graph elements are actually pushed to it from the workers.

Conversely, if the device is a Worker, we use replica_device_setter to build our
model, so that parameters are consistently allocated across our Parameter Servers.
Finally, a tf.Session is created and the model is trained.

A valuable note is that Parameter Servers and Workers may coexist on the same
machine. This is actually the recommended choice, especially when GPU-enabled
nodes are available. In this case, Parameter Servers would run on CPUs and Workers
on GPUs, as their workload is much heavier. By doing so, not only do we reduce the
number of nodes required to run a given application, but also minimize the amount
of traffic generated in the network, resulting in higher performance.

2.1.1 Load Balancing

In a distributed environment, it is of importance that each Worker has available the
updates obtained by the other Workers in order to train faster. This leads to the
need of tackling how to place the variables.

TensorFlow’s tf.device function allows to specify where each operation is stored
by means of a device string passed as its argument. The following snippet of code
gives an example of how this is done.
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with tf.device("/job:ps/task:0/cpu:0"):
weights_1 = tf.get_variable('weights 1", [784, 100])
biases_1 = tf.get_variable(’'biases_1', [100])

with tf.device("/job:ps/task:1/cpu:0"):
weights_ 2 = tf.get_variable('weights 2’, [100, 10])
biases_2 = tf.get_variable(’'biases 2', [10])

with tf.device("/job:worker/task:0/gpu:0"):
# Build your model here

Listing 3: Variable placement with device strings.

Here, we ask for weights_1 and biases_1 to be placed in the first PS, while
weights_2 and biases_2 in the second one. Then, each worker designates itself
in the third with block in the case of “between-graph replication”.

However, it may be difficult to specify where each variable is hosted, especially if
many Parameter Servers are desirable for an application in order to distribute the
work of updating the variables or distribute the networking load for fetching them
to the Workers. So, TensorFlow allows to pass a device function instead of a device
string to tf.device, with the aim of setting a more sophisticated placement strategy.

Some of such functions are already embedded in TensorFlow. The simplest of them
is called tf.train.replica_device_setter, which assigns variables to the Param-
eter Servers in a round-robin fashion as they are created. A nice property of this
device function is that it allows to write all the code to build a model in a single with
block. In fact, this only affects the variables, putting them in different Parameter
Servers, while the rest of the operations in the graph go on Workers, simplifying
“between-graph replication” parallelism.

The following snippet gives an example of using this function and the resulting
variable placement is shown in Figure 4] under the round-robin case.

with tf.device(tf.train.replica_device_setter(ps_tasks=3)):
weights_1 = tf.get_variable(’'weights 1’, [784, 100])
biases_1 = tf.get_variable(’'biases 1', [100])
weights_2 = tf.get_variable('weights_2', [100, 10])
biases_ 2 = tf.get_variable(’biases 2’, [10])
# Build your model here

Listing 4: Default variable placement with replica_device_setter.
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Round-robin variables

/job:ps/task:0 /job:ps/task:1 /job:ps/task:2
weights_1 weights_2

Load balancing variables

/job:ps/task:0 /job:ps/task:1 /job:ps/task:2

weights_1 — weights_2

Figure 4: Round-robin (default) and greedy load balancing variable placement with
replica_device _setter.

For this example, Figure 4] shows that weights_1 would go to the first Parameter
Server, biases_1 would go to the second Parameter Server, weights_2 would be
put on the third Parameter Server and biases_2 back on the first Parameter Server.
This is obviously not a balance load for these variables, neither in terms of the mem-
ory usage nor in terms of the work to be done to update these variables.

Moreover, if only two Parameter Servers were used here, we would end up in an
even worse case where all the weights would go on the first Parameter Server and
all the biases on the second one, giving an even bigger imbalance between these tasks.

To achieve a more balance load, TensorFlow allows to specify a load balancing
strategy in tf.train.replica_device_setter as an optional argument.

The only one currently available is a simple greedy strategy that does a kind of online
bin packing based on the number of bytes of the parameters, giving a more balanced
outcome as shown under load balancing variables in Figure [ for our example.

1 greedy = tf.contrib.training.GreedylLoadBalancingStrategy(...)

> with tf.device(tf.train.replica_device setter(ps_tasks=3,

3 ps_strategy=greedy)):
1+ weights_1 = tf.get_variable('weights 1", [784, 100])

5 biases_1 = tf.get_variable(’'biases 1', [100])

¢ weights_2 = tf.get_variable('weights_2', [100, 10])

7 biases 2 = tf.get variable(’biases 2', [10])

Listing 5: Greedy load balancing variable placement with replica_device_setter.
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3 Environments

In this section, we introduce all the systems which have been used to test and run
TensorFlow applications and how to set them up.

The version of TensorFlow that we chose is 1.1.0 in order to compare our results
with other benchmarks available online.

The code for this section can be found in the environments_setup folder of our
repository.

3.1 Local workstation

With local workstation we mean a device, such as a laptop, which usually does not
have much compute power. This can be used to just test whether an application
works, even in a distribute setting if it possesses multiple CPUs and/or GPUs.

Follow the instructions on the GitHub page to install TensorFlow and create a virtual
environment.

3.2 Piz Daint

Piz Daint is a hybrid Cray XC40/XC50 supercomputer at CSCS. The system has
Aries routing and communications ASIC, with Dragonfly network topology.
At the time of writing, it is the third most powerful supercomputer in the world [12]

and in the top ten of the most energy-efficient supercomputers [6].
Each node that we use in Piz Daint is equipped with an NVIDIA Tesla P100 [§].

We use the TensorFlow 1.1.0 module available in Piz Daint whenever we run an
application.

The instructions in the GitHub page show how to create a virtual environment
containing all the requirements needed to also run Jupyter notebooks (provided a
local workstation has already been set up and its pip requirements are available).
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3.3 AWS EC2

We also use Amazon EC2 instances [5] to compare the speedup achieved on Piz
Daint with the virtual servers available in the cloud of one of the most popular web
services.

There are many types of virtual servers, also known as compute instances, to choose
from [I]. For our comparisons, we make use of P2 instances, intended for general-
purpose GPU compute applications. In particular, we use p2.xzlarge (1 GPU per
node) and p2.8zlarge (8 GPUs per node) models.

AWS.md (in the repository folder) contains additional information on how to create
EC2 instances, Amazon S3 [2] buckets (object storage) and how to transfer data
from/to S3.

The instructions in the README file illustrate how to set up each instance to run
TensorFlow 1.1.0. To do so, NVIDIA cuDNN [7] is required. In our case, we retrieve
it from Piz Daint.

The only inputs required for the setup of all the machines are their IP addresses,
both public and private ones E] Hence, you can simply launch compute instances
via the AWS management console and copy their IP addresses, one per line, in
aws_public_ips.txt and aws_private_ips.txt under the repository’s root direc-
tory, without leaving any empty lines.

2We need the instances’ private IP addresses in order to avoid sending each packet through an
additional hop, which would considerably reduce performance.
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4 Distributed TensorFlow

We now describe how to launch a script written to use distributed TensorFlow (see
Section [2.1)) in each of the environments introduced in the previous section.

The code for this section can be found in the distributed_tensorflow_launchers
folder of our repository.

4.1 Local workstation

The setup script for the local workstation runs each task (PS or Worker) on a differ-
ent terminal window. By default, Parameter Servers are launched starting at port
2230, while Workers at 2220. The script calls, for each task, run_dist_tf_local.sh.

This script then runs the (distributed TensorFlow) Python script defined herein,
with the flags specified in this file as well, for its corresponding task.

4.2 Piz Daint

In the setup script for Piz Daint, we firstly set options for Slurm and load the Ten-
sorFlow module. Then, we define the (distributed TensorFlow) Python script to be
executed and its flags. Finally, we set the number of Parameter Servers and Workers.
These values must be consistent with the number of nodes requested for the job. In
particular, if the Parameter Servers run in a (sub)set of the Worker nodes [J] (default
behavior), then the number of Workers must not exceed the number of allocated
nodes. On the other hand, if the PSs need to run on different nodes than the Work-
ers, then the total number of tasks must not exceed the number of allocated nodes.
In case the number of allocated nodes is not enough, an error message is returned.
Other settings for a distribute run (commented in the setup script) can be tuned.

This script then calls run_dist_tf_daint.sh with the settings declared, which runs
the Python script in a distribute environment as described in the next paragraph.

run_dist_tf_daint.sh runs the Python script that exported in the setup file.
Firstly, the script checks which configuration parameters have been set by the user
in the setup file. The only necessary information needed is the name of the Python

3We assume that the number of Workers is always greater than or equal to the number of PSs.
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script. The number of Parameter Servers defaults to 1, while the number of Workers
defaults to the number of allocated nodes. If not set in the setup file, the script also
assumes to run one Worker per node and at one Parameter Server. Note that it
is not possible to run multiple Workers on a single node in Piz Daint if you use
the GPU partition as multiple TensorFlow tasks cannot share the same device. As
mentioned above, if multiple Parameter Servers are set, the script’s default is to run
them in a (sub)set of the nodes running a Worker task. This is possible because
Worker’s operations run in the GPU, while Parameter Servers run in the CPU.
The script then retrieves which nodes have been assigned to the job and creates two
comma-separated lists: one indicating Parameter Server hosts and one indicating
Worker hosts. For each node, PSs start at port 2230, while Workers at port 2220.
After that, for each node, the script determines how many PSs and Workers are to
be run in that node, and creates a Bash script to launch Parameter Server and/or
Worker processes. When creating these Bash scripts, if a Parameter Server is to
be launched, then it is necessary to hide the GPU to avoid that the PS runs on it;
which would result in the Worker running on the CPU.

The need of a Bash script is justified by the fact that you can only have a single
srun execution per node. So, we just run each process in background (appending &
at the end of the command) but the last one.

4.3 AWS EC2

The setup script for Amazon EC2 instances runs remotely; i.e. from a local worksta-
tion, for instance. It launches one or multiple tasks for each node, according to the
number of PSs and Workers entered. Parameter Servers always run in nodes running
Worker tasks as well. The only inputs to the setup script are the IP addresses of
the instances, the path of the private key you use to log into them and the number
of PSs and Workers. In detail, a screen session is started for each task.

Parameter Servers’ ports start from 2230 at each node, while Workers’ from 2220.
It is necessary that private and public IP addresses correspond to the same EC2
instance in the two IP files. That is, the private IP address in line 1 of the private
IP addresses file must be the private address of the instance whose public IP address
is in line 1 in the public IP addresses file. Private IP addresses are requested in order
to reduce the number of hops between two nodes, achieving higher performance.

run_dist_tf_aws.sh, instead, has to be copied in each EC2 instance, along with
the (distributed TensorFlow) Python script. When called from the setup file, this
script firstly hides the GPUs from the Python application if the launched task is a
Parameter Server (to the Workers to use them) and then runs the application.
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4.4 Case Study: MNIST

The MNIST folder of our repository contains an application of the scripts described
above for a local workstation and Piz Daint.

DeepMNIST.ipynb and deepMNIST.py contain the code of the original deep MNIST
tutorial available in TensorFlow’s website, which consists of a three-layer neural
network (two convolutional layers followed by a fully-connected layer) to classify
handwritten digits.

We then provide a GPU-enhanced version of this network (deepMNIST_gpu.py).
As described in TensorFlow’s High-Performance Models page, one of the best prac-
tices to improve performance and increase flexibility of a model is to add the support
for the data format. In fact, most TensorFlow operations used by a CNN support
both NHWC and NCHW image data formats. Image data format refers to the rep-
resentation of batches of images. TensorFlow supports NHWC (TensorFlow default)
and NCHW (cuDNN default). N refers to the number of images in a batch, H refers
to the number of pixels in the vertical dimension, W refers to the number of pixels in
the horizontal dimension, and C refers to the channels (e.g. 1 for black and white,
3 for RGB, etc.). Although cuDNN can operate on both formats, it is faster to
operate in its default format. So, NCHW should always be used when training with
GPUs, while NHWC is sometimes faster on CPUs. By adding data formats to an
application, it is then possible to train using NCHW on GPU, and then do inference
with NHWC on CPU.

In order to make the existing application support NCHW data format, we introduce
some if statements that allow to swap the order of the elements in the kernel size and
strides arrays in the pooling layers. Moreover, we also use the optional data format
argument of the tf.nn.conv2d function to let the specified image data format being
used in convolutions.

Finally, we apply the template shown in Listing[2|to train this GPU-enhanced version
of MNIST across multiple nodes in dist_deepMNIST_gpu.py. Here, only Worker 0
evaluates test accuracy, while each Worker evaluates their train accuracy. To launch
this application, we used the setup and run _ dist tf scripts presented in this section.
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5 Benchmarking Distributed Training

We now present the scalability results relative to training InceptionV3 [16], a deep
neural network by Google, on GPU-enabled nodes in Piz Daint and in Amazon EC2.
To do so, we use Google’s script [10], which provides optimized implementations for
multiple networks. The dataset used for training is ImageNet [14], one of the most
common datasets used for classification in Computer Vision.

The code for this section can be found in the google-benchmarks folder of our
repository.

5.1 Methodology

Google’s script allows to set different parameters, such as the batch size, the number
of warmup steps, the number of steps to be averaged, whether to use NVIDIA NCCL
all-reduce primitives and the data layout format (NCHW or NHWC).

The main output of this script is the average number of images per second that
have been trained in the system. In order to find a good ratio between the number
of Workers and the number of Parameter Servers, we try, for each configuration
of number of Workers and number of nodes, several values for the number of PSs
ranging from 1 to the number of Workers. For each configuration, we then report
the results achieving the largest number of images trained per second. In order to
produce results that are as repeatable as possible, each test was run 5 times and
then the times were averaged together, analogously to what Google did. GPUs are
run in their default state on all the platforms.

For each test, 10 warmup steps are done and then the next 100 steps are averaged.

We ran our benchmarks using both real and synthetic dataF_f], so that we can evaluate
both the compute and the input pipelines.

5.2 Systems

We run benchmarks on Piz Daint, as well as on p2.zlarge and p2.8zlarge Amazon
EC2 instances. Whenever possible, we compare our results with the ones published

4By synthetic data we mean fake data that has almost the same properties as the real one.
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by Google [I1], obtained with NVIDIA DGX-1 and Amazon p2.8zlarge systems.
Piz Daint and NVIDIA DGX-1 both have NVIDIA Tesla P100 GPUs, even though
the former only has one GPU per node, while the latter has 8 GPUs per node.
Amazon p2.zlarge and p2.8xlarge EC2 instances, instead, are equipped with NVIDIA
Tesla K80 GPUs. p2.zlarge instances have one GPU per node, while p2.8zlarge
instances have eight GPUs per node (four K80).

5.3 Results

For all of the reported results, the following settings are used:
e Model: InceptionV3
e Batch size per GPU: 64
e Data Format: NCHW
e Local Parameter Device: CPU
e Optimizer: sgd
e Piz Daint OS: Suse 12/CLE 6.0.UP02
e AWS OS: Ubuntu 16.04 LTS
e CUDA /cuDNN: 8.0/5.1
e TensorFlow: 1.1.0
e Piz Daint Parallel File System: Lustre
e AWS Disk: Local SSD
e DataSet: ImageNet
e Test Date: August 2017

Moreover, nodes running Workers also run Parameter Servers as this leads to higher
performance.

5.3.1 Training with NVIDIA Tesla P100

Google provides results only for a single NVIDIA DGX-1, hence allowing compar-
isons up to 8 GPUs. Results are shown in Figure [f] for synthetic data (no I/O). Here,
we can see that the peak performance of Piz Daint is close to the one achieved by
an NVIDIA DGX-1, even though multiple nodes are used in Piz Daint. Specifically,
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Figure 5: Training with NVIDIA Tesla P100 on synthetic data up to 8 GPUs.

with eight GPUs, while Google reports a speedup efficiency of 99.56%, we report a
speedup efficiency of 92.07% on Piz Daint.

5.3.2 Training with NVIDIA Tesla K80

Figure [6] shows how Amazon EC2 p2.zlarge and p2.8zlarge compute instances scale
out up to 8 GPUs.

Training: no 1/0 (1,2,4, and 8 GPUs) Training speedup: no 1/0
230.75 8 System

- @ p2.8xlarge run by Google /‘
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p2.8xlarge run by Google p2.8xlarge run by CSCS p2.xlarge run by CSCS 1 2 4
System Number of GPUs

Figure 6: Training with NVIDIA Tesla K80 on synthetic data up to 8 GPUs.

Google provides results that achieve a scalability efficiency of 94.58% with 8 GPUs
on a p2.8zlarge, and, similarly, our measurements show an efficiency of 94.44% on
the same machine.

We also ran tests on p2.xzlarge instances, showing that comparable performance
(93.45% scalability efficiency) can be obtained with eight nodes (eight GPUs).
Hence, we can infer that the application is compute bounded when up to eight GPUs
are used because we achieve the same performance with eight nodes as with a single
node having eight GPUs regardless of the underlying network (Piz Daint or AWS).
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Figure 7: Training with NVIDIA Tesla K80 on synthetic data up to 64 GPUs.

Figure [7], instead, shows how the number of images trained per second in these
systems scales when up to 64 GPUs are used. It is interesting to note that up to 16
GPUs, p2.zlarge and p2.8zlarge systems have close performance: We report 88.31%
for the former and 91.77% for the latter.

Moreover, even though 32 nodes are required for a p2.zlarge system to use 32 GPUs,
it still achieves a scalability efficiency greater than 80%. Specifically, we report
88.35% efficiency for a four-node p2.8zlarge system and 84.45% efficiency for a thirty-
two-node p2.zlarge system.

However, once a cluster of sixty-four p2.xzlarge nodes is employed, the scalability
efficiency stops at 50.96%, while a cluster of eight p2.8zlarge still exhibits 88.55%
efficiency from our measurements and 92.86% from Google’s ones. This is probably
due to the fact that the network capacity is not sufficient anymore for the amount
of traffic generated by all the nodes in the p2.zlarge cluster.

5.3.3 Distributed training on Piz Daint

Figure [§ shows how the average number of images trained per second varies as the
number of nodes (GPUs) increases both when using fake data and when reading
data from the Parallel File System on Piz Daint. Each of these values represents the
peak performance achieved with the corresponding number of GPUs, obtained by
setting the parameters listed in Table[I] Here, we can see that Piz Daint’s scalability
efficiency drastically drops when 128 nodes are used. We think this is due to having
reached the inter-node network capacity because of the largely increased amount of
data sent between Workers and Parameter Servers.
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Figure 8: Training on Piz Daint with synthetic and real data up to 128 GPUs.

H Num PSs | Num GPUs | Variable Update

Real Data ‘ Img/s H

1 1 parameter server FALSE 138.23
1 1 parameter _server TRUE 137.03
1 2 parameter server FALSE 264.57
1 2 distributed replicated | TRUE 260.84
3 4 distributed replicated | FALSE 523.38
3 4 distributed replicated | TRUE 516.71
2 8 parameter server FALSE 1018.18
2 8 parameter server TRUE 911.84
4 16 parameter _server FALSE 2001.00
4 16 parameter server TRUE 1772.34
12 32 parameter _server FALSE 3840.35
12 32 parameter server TRUE 3425.55
40 64 parameter server FALSE 7118.31
40 64 parameter server TRUE 6348.74
116 128 parameter server FALSE 9219.70
116 128 parameter server TRUE 9055.64

Table 1: Parameters achieving peak performance on Piz Daint.

5.3.4 Distributed training on Amazon p2.xlarge

Figure [9 displays the trend of average number of images trained per second as the
number of nodes (GPUs) increases both when using fake data and when reading
data from the local SSD at each node in a cluster of p2.xzlarge machines. The
parameters resulting in the peak performance for each different number of GPUs
are listed in Table [2] In this plot, we can see that p2.zlarge’s scalability efficiency
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diminishes only when 64 nodes are benchmarked. This system has single-GPU nodes
like Piz Daint but it stops scaling out efficiently for a smaller number of nodes. The
main difference amongst them is their inter-node network (Piz Daint’s being faster),
providing additional support to our belief of inter-node network bottleneck for Piz
Daint and p2.zlarge systems.
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Figure 9: Training on p2.zlarge with synthetic and real data up to 128 GPUs.

H Num PSs | Num GPUs | Variable Update Real Data ‘ Img/s H

1 1 parameter server FALSE 30.55
1 1 parameter server TRUE 30.04
2 2 distributed replicated | FALSE 57.45
2 2 distributed replicated | TRUE 56.93
4 4 distributed replicated | FALSE 114.57
4 4 distributed replicated | TRUE 113.03
8 8 distributed replicated | FALSE 228.41
8 8 distributed replicated | TRUE 224.06
12 16 distributed replicated | FALSE 431.64
12 16 distributed replicated | TRUE 431.31
32 32 parameter server FALSE 825.64
32 32 parameter server TRUE 734.97
64 64 parameter server FALSE 996.32
64 64 parameter server TRUE 986.91
128 128 parameter server FALSE 1077.59
128 128 parameter server TRUE 1080.12

Table 2: Parameters achieving peak performance on p2.zlarge systems.
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5.3.5 Distributed training on Amazon p2.8xlarge

Figure [10| presents the average number of images trained per second as a function
of the number of GPUs both when using fake data and when reading data from
local the SSD at each node in a p2.8zlarge cluster. The parameters giving the
highest performance for the different numbers of GPUs are enlisted in Table 3| This
plot does not show any evident reduction in scalability as the number of GPUs is
increased. In such system, Workers aggregate their updates before sending them to
the PSs. Hence, the traffic generated when 128 GPUs are used here is comparable
to the one generated by a system of sixteen single-GPU nodes.
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Figure 10: Training on p2.8zlarge with synthetic and real data up to 128 GPUs.

H Num PSs ‘ Num GPUs ‘ Variable Update Real Data ‘ Img/s H
1 1 parameter server FALSE 30.55
1 1 parameter server TRUE 30.04
1 2 distributed replicated | FALSE 58.38
1 2 distributed replicated | TRUE 58.23
1 4 distributed replicated | FALSE 116.34
1 4 distributed replicated | TRUE 115.56
1 8 distributed replicated | FALSE 230.75
1 8 distributed replicated | TRUE 190.02
1 16 distributed replicated | FALSE 448.57
1 16 distributed replicated | TRUE 387.67
3 32 distributed replicated | FALSE 863.72
3 32 distributed replicated | TRUE 717.49
8 64 distributed replicated | FALSE 1731.31
8 64 distributed replicated | TRUE 1430.28
16 128 distributed _replicated | FALSE 3333.20
16 128 distributed replicated | TRUE 2832.83

Table 3: Parameters achieving peak performance on p2.8zlarge systems.




Distributed TensorFlow: A performance evaluation Page 23 0f|2_5|

1/0 overhead in distributed training
System 17.65 17.39 (e
1757 e pizDaint p2.xlarge  mmm p2.8xlarge ) 16.93 Network bottleneck
@ |reduces I/0 impact |

15.0 15.01
13.58
125 [caching?)

11.43 108
1oa 10.80 10: 10.81

100

7.

5.0

25 1.90

1.41
7 0.88 .
0.25
1 2

1/0 overhead [%)

n

1.67 1.67

0.8°

0.08 0.00

4 8 16 32 64 128
Number of GPUs

Figure 11: I/O overhead in distributed training in terms of number of GPUs for all
the systems under study.

5.3.6 I/0O overhead

Finally, Figure plots the relative overhead (in percentage) due to I/O access.
That is, for each setting, we obtain the relative I/O in percentage as:
N GPUs I'mg/s_Syntheticy-o'"* — Img/s Real

System
Img/s S yntheticgygggjs

N_GPUs

I/0 overhead System ¢ 100.

System

The first thing we observe from this plot is that when 8 GPUs per node are used in
a p2.8zlarge cluster, where each node loads data from a local SSD, a constant 1/O
overhead of around 17% is present (due to PCle traffic).

Looking at p2.zlarge clusters, instead, we see that I/O access does not add any
overhead, apart when thirty-two nodes are used. However, this still comes at the
expenses of replicating the data at each node.

Focusing on Piz Daint at last, we see that around 11% of 1/O overhead is present
when eight to sixty-four nodes are used.

On the other hand, this is not shown when less nodes are employed. The reason
might be due to caching mechanisms in the system.

The I/O overhead drops down once more for one hundred and twenty-eight nodes.
In this case, the reason of this reduction may be found in the predominance of the
inter-node network bottleneck, which makes the impact of I/O access negligible.

TensorFlow communication patterns should be profiled to verify all our intuitions.
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6 Conclusion and Future Work

Deep neural networks are being used to solve challenges that not long ago were be-
lieved to be infeasible to face. Deep learning thrives with large neural networks and
large datasets, resulting in training times that can be impractical on a single node.

In this report, we show how to train a model in TensorFlow in a distributed setting
and provide benchmarks for InceptionV3 on different systems.

The first outcome is that training on eight nodes in Piz Daint achieves close perfor-
mance to an NVIDIA DGX-1, an integrated system for deep learning.

Looking at the scalability on Piz Daint for InceptionV3, we expect an average 11%
overhead due to I/O access when compared to the corresponding performance with
synthetic data. Moreover, we expect to detect an inter-node network bottleneck
after 64 nodes for this application.

In multi-GPU systems, there is no strong dependence on the interconnect up to 16
8-GPU nodes thanks to the local aggregation performed at each node which reduces
the inter-node traffic by the number of GPUs per node. Moreover, using local SSDs
and eight GPUs per node adds a constant 17% 1/O overhead due to the generated
PCle traffic.

Unfortunately, no benchmarks for multiple DGX-1 systems are available at the time
of writing, making any direct comparison with Piz Daint impossible. However, for
this application, we expect that it is possible for 64 nodes in Piz Daint to achieve
performance close the one of a 8 DGX-1 systems.

As part of future work, we plan to profile TensorFlow communication patterns to
verify our intuition of inter-node network bottleneck when the number of nodes in
a systems becomes large.

A fundamental topic to be investigated is the resulting training accuracy when an
application is trained in multiple single- and multi-GPU systems. Distributed deep
learning is a currentt hot research area. Recently, Facebook showed that they
trained, with no loss of accuracy, ImageNet in one hour in Caffe2 using ResNet-
50 [I5], while IBM trains ResNet-50 in fifty minutes [13] in Torch in their software-
hardware co-optimized distributed deep learning system.

Another interesting aspect to look into is how the number of Parameter Servers re-
quired to achieve the highest performance for a given number of Workers and nodes
depends on the underlying inter-node network capacity. In fact, both Piz Daint and
p2.zlarge clusters have single-GPU nodes but when the number of Workers (nodes)
becomes large, they require a different number of Parameter Servers to reach their
peak performance. In particular, p2.zlarge cluster end up asking for as many Pa-
rameter Servers as Workers (we did not test whether more Parameter Servers than
Workers might lead to better performance).
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