CSCS ETHzirich
\) . Centro Svizzero di Calcolo Scientifico

Swiss National Supercomputing Centre

@ @

Distributed TensorFlow: A performance evaluation

End-of-internship Seminar

Emanuele Bugliarello
emanuele.bugliarello@gmail.com

September 6, 2017 httDs://qithub.com/e-buq/distributed-tensorﬂow-benchmarksO

https://github.com/e-bug/distributed-tensorflow-benchmarks

Introduction

What is TensorFlow?
Google's open-source software library for Machine Learning
= Best-supported client language: Python
= Experimental interfaces for: C++, Java and Go

Why TensorFlow?
= Portable & flexible — popular in industries and in research communities
= Most CSCS clients choose TensorFlow as their Deep Learning library

Why distributed training?
Training a neural network can take an impractically long time on a single machine (even
with a GPU)

Results
On 64 GPUs: ~80% scalability efficiency in Piz Daint & almost 90% in 8 8-GPU nodes

\":‘ CSCS Distributed TensorFlow: A performance evaluation | 2 E'HZU/’/C/']
N

ToC

= [ntroduction

= TensorFlow overview

= Distributed training in TensorFlow
= Benchmarks

= Conclusion and Future Work

\":‘ CSCS Distributed TensorFlow: A performance evaluation | 3 E'szrich
N

TensorFlow overview (1)

TensorFlow is based on data flow graphs

* Nodes represent mathematical operations
= Tensors move across the edges between nodes

Writing a TensorFlow application

1. Build computation graph f
2. Run instances of that graph

30
\\0‘0 CSCS

Wa

Li =).;,, max(0,s; — sy, + 1)

\ @ s (scores)

0

L

s
R(W)

Figure 1. Computational graph for regularized Multiclass SVM loss (CS231N, Stanford University)

Distributed TensorFlow: A performance evaluation

4

ETHzirich

http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture8.pdf

TensorFlow overview (2)

Example: Linear Regression in TensorFlow import matplotlib.pyplot as plt
import numpy as np

import tensorflow as tf

fEwx+b L=(y-y_pred)
X # ===#
+ y—pred quadratic L # LOAD DATA #
loss H# =============—=======—=—====—=———=——=—========== #
W # Generate some data as y=3*x + noise

N_SAMPLES =10

X_in = np.arange(N_SAMPLES)

b y_in =3*x_in + np.random.randn(N_SAMPLES)
data = list(zip(x_in, y_in))

y

Figure 2: Computational graph for Linear Regression with squared loss

\":‘ CSCS Distributed TensorFlow: A performance evaluation | 5 E'HZU[’/C/‘]
N

TensorFlow overview (3)

Example: Linear Regression in TensorFlow L R
BUILD GRAPH
===#
f=wx+b L= (y-y_pred) simple_graph = tfF.Graph()
X with simple_graph.as_default():
+ y_pred Quadratic L # Generate placeholders for input x and outputy
loss x = tf.placeholder(tf.float32, name="x")
W y = tf.placeholder(tf.float32, name='"y’)

Create weight and bias, initialized to 0
b w = tf.Variable(0.0, name='weight')
b =tF.Variable(0.0, name='bias’)

y # Build model to predicty
y_predicted=x*w+Db

Figure 2: Computational graph for Linear Regression with squared loss
Use the square error as the loss function
loss = tf.square(y -y_predicted, name='loss’)

Use gradient descent to minimize loss
optimizer = tf.train.GradientDescentOptimizer(0.001)
train = optimizer.minimize(loss)

\":‘ CSCS Distributed TensorFlow: A performance evaluation | 6 E'HZU[’/C/‘]
N

TensorFlow overview (4)

Example: Linear Regression in TensorFlow L R
EXECUTE GRAPH
===#
f=wx+b L= (y-y_pred) # Run training for N_EPOCHS epochs
X N _EPOCHS =5
+ y_pred quadratic L with tF.Session(graph=simple_graph) as sess:
loss # Initialize the necessary variables (w and b here)
W sess.run(tf.global_variables_initializer())
Train the model
b foriin range(N_EPOCHS):
total loss =0
For x_,y_in data:
y # Session runs train operation and fetches values of loss
_, Lvalue = sess.run([train, loss], feed_dict={x:x_,y:y })
Figure 2: Computational graph for Linear Regression with squared loss total_loss += | value
print('Epoch {0}: {1}'.fFormat(i, total_loss/N_SAMPLES))
Output final values of wand b
w_value, b_value = sess.run([w, b])
\‘0‘0 CSCS Distributed TensorFlow: A performance evaluation | 7 ETHzlrich

S 4

TensorFlow overview (5)

Example. Linear Regression in TenSOrFIOW # oS ————— #
PLOT RESULTS
N # e T T T e T T T s s e s s T e T T e T s T e T T T s e s e e #
f=wx+b L= (y-y_pred) print(w_value, b_value) # 2.89, 0.45
X plt.plot(x_in, y_in, 'bo’, label='"Real data')
o y_pred Quadratic L plt.plot(x_in, x_in*V\{_value + b_value, 'orange’,
loss label='Predicted data')
W plt.ylabel('y');plt.xlabel('x")

plt.title('Linear Regression")
plt.legend();plt.grid()
b plt.show()

Linear Regression

® Real data °
251 Predicted data T

y

20 A

Figure 2: Computational graph for Linear Regression with squared loss

15 i *

10 A

0 2 2 6 8
Figure 3: Learned linear model

\":‘ CSCS Distributed TensorFlow: A performance evaluation | 8 E'HZU[’/C/‘]
N

ToC

= |ntroduction

= TensorFlow overview

= Distributed training in TensorFlow
= Benchmarks

= Conclusion and Future Work

\":‘ CSCS Distributed TensorFlow: A performance evaluation | 9 E'Hz[jrich
N

Distributed training in TensorFlow (1)

= Split the training of a neural network across multiple nodes

= Most common approach: data parallelism
Each node has an instance of the model and reads different training samples
= Also known as “between-graph replication” in TensorFlow

= Processes can either be:
= Worker

= PSs sum gradients to merge in one step what
each Worker has learned to reduce the loss

30
\\0‘0 CSCS

Runs the model
Sends its local gradients to the PSs
Receives updated variables back

Parameter Server (PS)

Hosts trainable variables
Updates them with values sent by the Workers

Distributed TensorFlow: A performance evaluation | 10

/" liob:worker/task:0 "\

-

N\ J

/~ ljob:psitask:0 "\

biases 1

g

/" liob:worker/task:1 "\

J

-

N\ J

/~ liob:psitask:1 "\

biases 2

g

J

ETHzirich

Distributed training in TensorFlow (2)

= Workers need to send their updates to the correct Parameter Servers
= Use TensorFlow’s replica_device_setter for a deterministic variable allocation

« Parameter Servers and Workers may coexist on the same machine
= Recommended when Workers run on GPUs
= Reduce the number of nodes

= Minimize network communications /" liob:worker/task:0 Y\ /~ Jjob:worker/task:1

K/job:worker/task:O\ K/job:worker/taskﬂ\ @ @
/job:ps/task:0 /job:ps/task:1 /~ liob:psitask:0 Y\ / /iob:psitask:1

_ N J Y

\":‘ CSCSs Distributed TensorFlow: A performance evaluation | 11 E'HZU[’/C/‘]
N\

Distributed training in TensorFlow (3)

= Define cluster of nodes and the role of each of them (PS/Worker)
= The following code snippet (https://clindatsci.com/blog/2017/5/31/distributed-tensorflow)
would be executed on each machine in the cluster, but with different arguments

import sys # Parameter server is updated by remote clients.
import tensorflow as tf # Will not proceed beyond this if statement.
if job_type == 'ps":

Specify the cluster's architecture server.join()
cluster = tf.train.ClusterSpec(else:

{'ps':['192.168.1.1:1111"], # Workers only

'worker": ['192.168.1.2:1111','192.168.1.3:1111']}) with tf.device(tf.train.replica_device setter(

worker_device='/job:worker/task:'+task_idx,

Parse command-line to specify machine cluster=cluster)):
job_type = sys.argv[1] # job type: "worker" or "ps" # Build your model here
task_idx = sys.argv[2] # index job in the worker or ps list # as if you only were using a single machine

as defined in the ClusterSpec
with tf.Session(server.target):
Create TensorFlow Server. # Train your model here
This is how the machines communicate.
server = tf.train.Server(cluster, job_name=job_type,
task_index=task_idx)

\":‘ CSCS Distributed TensorFlow: A performance evaluation | 12 E'HZU["/C/‘]
N

https://clindatsci.com/blog/2017/5/31/distributed-tensorflow

Distributed training in TensorFlow (4)

Running distributed TensorFlow on Piz Daint
= Write a Python script (TF_SCRIPT) accepting job_name, task_index, ps_hosts and worker_hosts TensorFlow

flags
= Write a Bash script like the following one; run_dist_tf_daint.sh will specify the cluster from allocated nodes
#!/bin/bash # set TensorFlow script parameters

export TF_SCRIPT="SHOME/project_dir/project_script.py"
#SBATCH --job-name=distributed_tf

#SBATCH --time=00:12:00 export TF_FLAGS="--num_gpus=1--batch_size=64
#SBATCH --nodes=8 --num_batches=4 --data_format=NCHW"
#SBATCH --constraint=gpu
#SBATCH --output=distributed_tf.%j.log # set TensorFlow distributed parameters
export TF_NUM_PS=$1# 1
Arguments: export TF_NUM_WORKERS=$2 # $SSLURM_JOB_NUM_NODES
$1: TF_NUM_PS: number of parameter servers # export TF_WORKER_PER_NODE=1
$2: TF_NUM_WORKER: number of workers # export TF_PS_PER_NODE=1

export TF_PS_IN_WORKER=true

load modules

module load daint-gpu # run distributed TensorFlow

module load TensorFlow DIST_TF_LAUNCHER_DIR=$SCRATCH/run_dist_tf_daint_dir
cd SDIST_TF_LAUNCHER_DIR
Jrun_dist_tf _daint.sh

\“:‘ CSCS Distributed TensorFlow: A performance evaluation | 13 E'HZUrich
A S

ToC

= |ntroduction

= TensorFlow overview

= Distributed training in TensorFlow
= Benchmarks

= Conclusion and Future Work

\“:' CSCS Distributed TensorFlow: A performance evaluation | 14 E'Hzt'jrich
N\

Benchmarks (1)

= Model
= InceptionV3
= Neural Network for 1000-class image "

classification (ImageNet competition)

Convolution

- Optimized code for benchmarks available
from Google

(1]

Data set
= ImageNet: 1,280,000 images (144 GB)

TensorFlow 1.1.0

Performance metric
= Number of trained images per second

\":‘ CSCS Distributed TensorFlow: A performance evaluation | 15 E'HZU[’['C/']
N

Benchmarks (2)

= Methodology

= For each configuration of number of Workers and number of nodes
= Run with different number of Parameter Servers on synthetic data (no /O access)
= Report best setting of number of Workers and number of PSs
= Run best setting on real data (with I/O access)

= Results repeatability
= Run each test 5 times and average times together (Google’s approach)
= Compare results with Google’s
= Limit impact on Piz Daint (200+ tests)

= For each test
= 10 warmup steps
= Next 100 steps are averaged

\":‘ CSCS Distributed TensorFlow: A performance evaluation | 16 E'HZU[’['C/']
N

Benchmarks (3)

= Systems
= Piz Daint (NVIDIA Tesla P100 - 1 GPU per node)
= Amazon EC2 instances

p2.xlarge (NVIDIA Tesla K80 - 1 GPU per node)
p2.8xlarge (NVIDIA Tesla K80 - 8 GPUs per node)

= Benchmarks from Google available at https://www.tensorflow.org/performance/benchmarks

= Google’s systems
NVIDIA DGX-1 (NVIDIA Tesla P100 - 8 GPUs per node)
Amazon p2.8xlarge (NVIDIA Tesla K80 - 8 GPUs per node)

\":‘ CSCS Distributed TensorFlow: A performance evaluation | 17 E'HZU[’/C/‘]
N

https://www.tensorflow.org/performance/benchmarks

Benchmarks (4)

NVIDIA Tesla P100 - synthetic data (no 1/0) - up to 8 GPUs

Training: no 1/O (1,2,4, and 8 GPUs)

GPUs p d
1410 | [y
Nod
1200
1131.00
1018.18
1000
[¥]
(17}
o800
(7]
[:7]
cn
[i+]
&
600 569.00
523.38
400
284.00 s Seaey A
gom L e
200 sk R |
142 00 Gt 1 13823 e el
]—_—.f g 1_-,/ 2
0 1 ! 1]
Google NVIDIA DGX-1 CSCS Piz Daint

Scalability efficiency

= 99.56% on 8 GPUs in NVIDIA DGX-1

System

= 92.07% on 8 GPUs in Piz Daint
= 8 nodes in Piz Daint have similar performance as an NVIDIA DGX-1

30
\\0‘0 CSCS

Distributed TensorFlow: A performance evaluation | 18

w1 o —~ m

Training speedup: no 1/O

System

@ Google NVIDIA DGX-1

=g CSCS Piz Daint

Number of GPUs

ETHzirich

Benchmarks (5)

NVIDIA Tesla K80 - synthetic data (no I/O) - up to 8 GPUs

Training: no I/O (1,2,4, and 8 GPUs) Training speedup: no I/O
GPUs per nod 22700 230.75 228.41 8 System
D ae : p2.8xlarge run by Google a
=4 p2.8xlarge run by CSCS o
200 61 =m= p2.xlarge run by C5CS
5
a4
150
U
o o
2 33
0 116.00 116.34 114.57 o
=) U
g &
E 100
2
58.00 58.38 57.45
8
50 - -
Al 4.1 1B
B 30.55 A 30.55 I I
= - T
i | i) b
= Lot 1. .
1 1 1 h
p2.8xlarge run by Google p2.8xlarge run by C5CS p2.xlarge run by CSCS 1 2 4 B
System Number of GPUs

Scalability efficiency
» 94.58% and 94.44% on 8 GPUs in p2.8xlarge
= 93.45% on 8 GPUs in p2.xlarge
= Up to 8 GPUs, compute bound application

\":‘ CSCS Distributed TensorFlow: A performance evaluation | 19 E'HZ[jriCh
N

Benchmarks (6)

NVIDIA Tesla K80 - synthetic data (no 1/0) - up to 64 GPUs

Training: no 1/O (1,8,16,32 and 64 GPUs) Training speedup: no 1/O
1783.00 70
1755 EEEE ST notE 173131 80 System /4
Nod i 5 p2.8xlarge run by Google Pl
ol p2.8xlarge run by CSCS '
-~ p2.xlarge run by C5CS)
1500 30 L]
20
1250
u o
“‘:al 1000 996.32 -g 1[)9
u 0200 863.72 g
g =i 825.64 a2 !
£ v 6
= 750 5
4
8 8 1 3
500 459.00 L 448 57 = o
8.8 8.8 43164 g g
= = < 2
a ‘/' 4 B/‘.l: 1 .32
350 229.00 230.75 = 2841 .~
B2 _B’_/" 2 1.716
- - i
30100-" 1 300557 1 301557 8 ¥
= T o T = T T T T T T T T
b2 8xlarge run by Google 1p2.8xlarge run by C5CS 1 p2.xlarge run by CSC5 1 2 4] 16 32 B4
System Number of GPUs

Scalability efficiency
= 92.86% and 88.55% on 64 GPUs in p2.8xlarge
= 50.96% on 64 GPUs in p2.xlarge

= [ntuition: inter-node network capacity reached with 64 GPUs in p2.xlarge

\":‘ CSCS Distributed TensorFlow: A performance evaluation | 20 E'HZUf'iCh
N

Benchmarks (7)

Piz Daint (NVIDIA Tesla P100) - synthetic and real data - up to 128 GPUs

Training on Daint: absolute values Training on Daint: speedup
Data type 921940 4 Data type
Synthetic == Real 100 4 Synthetic =—s Real
2
8000 g
50
7118.31 o
6348.74 30
6000 5
(¥
[10] o
a]
g g
& g 1
E 000 3840.35 og
3425 55 &
5
4
200100 }
2000 1 1??2 34
2
10 18_:]131 84
26436084 SBE 2=
138.237.03 ¥
0 ey [- | .
7. 1 2 4 B 16 2 B4 128
Number of GPUS Number of GPUs

Scalability eff|C|ency
* 80.46% (synthetic) and 72.39% (real) on 64 GPUs
= 52.11% (synthetic) and 567.63% (real) on 128 GPUs
= Intuition: inter-node network capacity reached with 128 nodes

\"‘ CSCS Distributed TensorFlow: A performance evaluation | 21
A S

ETHzirich

Benchmarks (8)

p2.xlarge (NVIDIA Tesla K80) - synthetic and real data - up to 128 GPUs

Training on p2.xlarge: absolute values Training on p2.xlarge: speedup
Data type 1077580.12 Data type
. Slynthehc .- Real . . 996 336 01 mg%_ Synthetic =—s Real
80
70
&0
50
825.64 &
800
734.97 H
20
(¥

3 g

g °° 3
@ g %]
£ 03] B
= 431.631.31 g
400 A 5
4
3

228 214 06
200 A 2
114. ﬂ'3 03
57. 456 94
30.530.04 1
0 — - ; |
1 1 2 4 B 16 2 B4 128
Number of GPUS Number of GPUs

Scalability eff|C|ency (Iocal SSD on each node)
= 50.96% (synthetic) and 57.33% (real) on 64 GPUs

= 27.56% (synthetic) and 28.09% (real) on 128 GPUs
= Intuition: inter-node network capacity reached with 64 nodes

\“‘ CSCS Distributed TensorFlow: A performance evaluation | 22
A S

ETHzirich

Benchmarks (9)

p2.8xlarge (8 * NVIDIA Tesla K80) - synthetic and real data - up to 128 GPUs

3500

Training on p2.8xlarge: absolute values

Training on p2.8xlarge: speedup

Data type 3333.20
Synthetic == Real mg% = Real
3000 1 &
2832.83 g
50
2
2500
30
20
¥ 2000 a
a]
7 1731.31 =
5 o 1,
[=1]
[1+] oL
£ 1500 1430.28 e
&
5
1000 ¢
863.72 5
717.49
2
500 448305 67
230.750.02
. 11638556 1
30.530.04 58.388.23 = . ;
0 — — 1 ; ; i ;
1 2 4 8 16 32 64 128 4 B 16 2

Number of GPUs Number of GPUs

Scalability efficiency (local SSD on each node)
= 88.55% (synthetic) and 74.39% (real) on 64 GPUs
= 85.24% (synthetic) and 73.67% (real) on 128 GPUs

= [ntuition: inter-node network capacity not reached (only 16 nodes for 128 GPUs)

30
\\0‘0 CSCS

Distributed TensorFlow: A performance evaluation | 23

ETHzirich

Benchmarks (9)

/0 overhead

1/0 overhead in distributed training

System | 17865 | | | 1739
757 T g W i ' | 16.97 " g | Network bottleneck
m Piz Daint m=m p2.xl mm p2.8x £
''''' p2.xlarge p2.8xlarge reduces /O impact

15.0 i} - |]5'01.

1254 | | Caching?! | 1
i 11.43
&
© . | | < [
e .
£
[~
[i¥]
>
[=]
o 151 _ !
=

| : ' 0.08

8
Number of GPUs

= ~17% on p2.8xlarge when 8 GPUs per node are used

= ~1% on p2.xlarge
= ~11% on Piz Daint when 8 to 64 GPUs used, ~71.5% otherwise

\).. CSCS Distributed TensorFlow: A performance evaluation | 24

ETHzirich

ToC

= |ntroduction

= TensorFlow overview

= Distributed training in TensorFlow
= Benchmarks

= Conclusion and Future Work

\“:‘ CSCS Distributed TensorFlow: A performance evaluation | 25 E'HZUriCh
N\

Conclusion
= 8 nodes in Piz Daint have similar performance to 1 NVIDIA DGX-1

= Scalability for InceptionV3 in TensorFlow

= On Piz Daint
= Supposedly inter-node bandwidth capacity reached after 64 nodes
= |/O cost ~11%
« On a multi-GPU system
= Inter-node traffic algorithmically reduced by the number of GPUs per node (interconnect seems to
have no real impact)
= Using local SSDs and 8 GPUs per node adds a constant ~17% 1/O overhead (PCle traffic)
= No benchmarks available for multiple NVIDIA DGX-1

= = Estimation according to the examined use case: Similar performance between 64 nodes
on Piz Daint and 8 NVIDIA DGX-1 connected by a reasonable inter-node network

Future Work
= |nvestigate impact of training accuracy in distributed setting (preliminary resuits)
= Profile TensorFlow communication patterns
= Analyze influence of number of PSs for single- and multi-GPU systems

\":‘ CSCS Distributed TensorFlow: A performance evaluation | 26 E'HZU[’/C/']
N

Conclusion_ | | o Thanf you
= 8 nodes in Piz Daint have similar performance to 1 NVIDIA DGX-1

= Scalability for InceptionV3 in TensorFlow

= On Piz Daint
= Supposedly inter-node bandwidth capacity reached after 64 nodes
= 1/O cost ~11%
« On a multi-GPU system
= Inter-node traffic algorithmically reduced by the number of GPUs per node (interconnect seems to
have no real impact)
= Using local SSDs and 8 GPUs per node adds a constant ~17% 1/O overhead (PCle traffic)
= No benchmarks available for multiple NVIDIA DGX-1
= = Estimation according to the examined use case: Similar performance between 64 nodes

on Piz Daint and 8 NVIDIA DGX-1 connected by a reasonable inter-node network

Future Work
= |nvestigate impact of training accuracy in distributed setting (preliminary resuits)
= Profile TensorFlow communication patterns
= Analyze influence of number of PSs for single- and multi-GPU systems

\":‘ CSCS Distributed TensorFlow: A performance evaluation | 27 E'HZU[’/C/']
N

<& cscs ETH:zurich

\‘ ‘ Centro Svizzero di Calcolo Scientifico
QU Swiss National Supercomputing Centre

Backup slides

Distributed training in TensorFlow (5)

Round-robin variables replica_device_setter provides two load

Tob pefask Tobipsfasici lobipofasi2 balancing strategies
= Round-robin (default)
= Greedy load balancing

Greedy load balancing variables

/job:ps/task:0 /job:ps/task:1 /job:ps/task:2
, greedy = tf.contrib.training.GreedyLoadBalancingStrategy(...)
with tf.device(
tf.train.replica_device_setter(ps_tasks=3,
ps_strategy=greedy)):
weights_1 = tfF.get_variable(‘'weights 1, [784, 100])
biases_1 = tf.get_variable('biases _1', [100])
weights_2 = tf.get_variable(‘'weights 2, [100, 10])
biases_2 = tf.get_variable('biases 2", [10])
\:0:0 CSCS Distributed TensorFlow: A performance evaluation | 29 ETHzurich

