Distributed TensorFlow: A performance evaluation

End-of-internship Seminar

Emanuele Bugliarello
emanuele.bugliarello@gmail.com

September 6, 2017

https://github.com/e-bug/distributed-tensorflow-benchmarks
Introduction

What is TensorFlow?
- Google's open-source software library for Machine Learning
 - Best-supported client language: Python
 - Experimental interfaces for: C++, Java and Go

Why TensorFlow?
- Portable & flexible → popular in industries and in research communities
- Most CSCS clients choose TensorFlow as their Deep Learning library

Why distributed training?
- Training a neural network can take an impractically long time on a single machine (even with a GPU)

Results
- On 64 GPUs: ~80% scalability efficiency in Piz Daint & almost 90% in 8 8-GPU nodes
ToC

- Introduction
- TensorFlow overview
- Distributed training in TensorFlow
- Benchmarks
- Conclusion and Future Work
TensorFlow overview (1)

TensorFlow is based on data flow graphs
 ▪ Nodes represent mathematical operations
 ▪ Tensors move across the edges between nodes

Writing a TensorFlow application
1. Build computation graph
2. Run instances of that graph

Figure 1: Computational graph for regularized Multiclass SVM loss (CS231N, Stanford University)
import matplotlib.pyplot as plt
import numpy as np
import tensorflow as tf

===
LOAD DATA
===
Generate some data as y=3*x + noise
N_SAMPLES = 10
x_in = np.arange(N_SAMPLES)
y_in = 3 * x_in + np.random.randn(N_SAMPLES)
data = list(zip(x_in, y_in))

Figure 2: Computational graph for Linear Regression with squared loss
Example: Linear Regression in TensorFlow

\[f = w \times x + b \]

\[L = (y - y_{\text{pred}})^2 \]

Figure 2: Computational graph for Linear Regression with squared loss

```python
# BUILD GRAPH

simple_graph = tf.Graph()

with simple_graph.as_default():
    # Generate placeholders for input x and output y
    x = tf.placeholder(tf.float32, name='x')
    y = tf.placeholder(tf.float32, name='y')

    # Create weight and bias, initialized to 0
    w = tf.Variable(0.0, name='weight')
    b = tf.Variable(0.0, name='bias')

    # Build model to predict y
    y_predicted = x * w + b

    # Use the square error as the loss function
    loss = tf.square(y - y_predicted, name='loss')

    # Use gradient descent to minimize loss
    optimizer = tf.train.GradientDescentOptimizer(0.001)
    train = optimizer.minimize(loss)
```

Distributed TensorFlow: A performance evaluation
Example: Linear Regression in TensorFlow

\[f = w \cdot x + b \]

\[L = (y - y_{\text{pred}})^2 \]

Figure 2: Computational graph for Linear Regression with squared loss

```python
# Run training for N_EPOCHS epochs
N_EPOCHS = 5
with tf.Session(graph=simple_graph) as sess:
    # Initialize the necessary variables (w and b here)
    sess.run(tf.global_variables_initializer())
    # Train the model
    for i in range(N_EPOCHS):
        total_loss = 0
        for x_, y_ in data:
            _, l_value = sess.run([train, loss], feed_dict={x: x_, y: y_})
            total_loss += l_value
        print('Epoch {}: {:.3f}'.format(i, total_loss/N_SAMPLES))
    # Output final values of w and b
    w_value, b_value = sess.run([w, b])
```

Distributed TensorFlow: A performance evaluation

TensorFlow overview (4)
Example: Linear Regression in TensorFlow

\[f = w \cdot x + b \]

\[L = (y - y_{\text{pred}})^2 \]

Figure 2: Computational graph for Linear Regression with squared loss

Figure 3: Learned linear model
ToC

- Introduction
- TensorFlow overview
 - Distributed training in TensorFlow
- Benchmarks
- Conclusion and Future Work
Distributed training in TensorFlow (1)

- Split the training of a neural network across multiple nodes
- Most common approach: data parallelism
 - Each node has an instance of the model and reads different training samples
 - Also known as “between-graph replication” in TensorFlow
- Processes can either be:
 - Worker
 - Runs the model
 - Sends its local gradients to the PSs
 - Receives updated variables back
 - Parameter Server (PS)
 - Hosts trainable variables
 - Updates them with values sent by the Workers
- PSs sum gradients to merge in one step what each Worker has learned to reduce the loss
Distributed training in TensorFlow (2)

- Workers need to send their updates to the correct Parameter Servers
 - Use TensorFlow’s `replica_device_setter` for a deterministic variable allocation

- Parameter Servers and Workers may coexist on the same machine
 - Recommended when Workers run on GPUs
 - Reduce the number of nodes
 - Minimize network communications
Distributed training in TensorFlow (3)

- Define cluster of nodes and the role of each of them (PS/Worker)
- The following code snippet (https://clindatsci.com/blog/2017/5/31/distributed-tensorflow) would be executed on each machine in the cluster, but with different arguments

```python
import sys
import tensorflow as tf

# Specify the cluster's architecture
cluster = tf.train.ClusterSpec(
    {'ps': ['192.168.1.1:1111'],
     'worker': ['192.168.1.2:1111', '192.168.1.3:1111']})

# Parse command-line to specify machine
job_type = sys.argv[1] # job type: "worker" or "ps"
task_idx = sys.argv[2] # index job in the worker or ps list
# as defined in the ClusterSpec

# Create TensorFlow Server.
# This is how the machines communicate.
server = tf.train.Server(cluster, job_name=job_type,
                          task_index=task_idx)

# Parameter server is updated by remote clients.
# Will not proceed beyond this if statement.
if job_type == 'ps':
    server.join()
else:
    # Workers only
    with tf.device(tf.train.replica_device_setter(
        worker_device='/job:worker/task:'+task_idx,
        cluster=cluster)):
        # Build your model here
        # as if you only were using a single machine

    with tf.Session(server.target):
        # Train your model here
```

- Define cluster of nodes and the role of each of them (PS/Worker)
- The following code snippet (https://clindatsci.com/blog/2017/5/31/distributed-tensorflow) would be executed on each machine in the cluster, but with different arguments
Distributed training in TensorFlow (4)

Running distributed TensorFlow on Piz Daint

- Write a Python script (TF_SCRIPT) accepting job_name, task_index, ps_hosts and worker_hosts TensorFlow flags.
- Write a Bash script like the following one; run_dist_tf_daint.sh will specify the cluster from allocated nodes.

```bash
#!/bin/bash

# set TensorFlow script parameters
export TF_SCRIPT="$HOME/project_dir/project_script.py"

export TF_FLAGS="--num_gpus=1 --batch_size=64 --num_batches=4 --data_format=NCHW"

# set TensorFlow distributed parameters
export TF_NUM_PS=$1 # 1
export TF_NUM_WORKERS=$2 # $SLURM_JOB_NUM_NODES
export TF_WORKER_PER_NODE=1
export TF_PS_PER_NODE=1
export TF_PS_IN_WORKER=true

# run distributed TensorFlow
DIST_TF_LAUNCHER_DIR=$SCRATCH/run_dist_tf_daint_dir
cd $DIST_TF_LAUNCHER_DIR
.
```

Running distributed TensorFlow on Piz Daint

- Write a Python script (TF_SCRIPT) accepting job_name, task_index, ps_hosts and worker_hosts TensorFlow flags.
- Write a Bash script like the following one; run_dist_tf_daint.sh will specify the cluster from allocated nodes.

```bash
#!/bin/bash

#SBATCH --job-name=distributed_tf
#SBATCH --time=00:12:00
#SBATCH --nodes=8
#SBATCH --constraint=gpu
#SBATCH --output=distributed_tf.%j.log

# Arguments:
# $1: TF_NUM_PS: number of parameter servers
# $2: TF_NUM_WORKER: number of workers

# load modules
module load daint-gpu
module load TensorFlow

Running distributed TensorFlow on Piz Daint

- Write a Python script (TF_SCRIPT) accepting job_name, task_index, ps_hosts and worker_hosts TensorFlow flags.
- Write a Bash script like the following one; run_dist_tf_daint.sh will specify the cluster from allocated nodes.

```bash
#!/bin/bash

set TensorFlow script parameters
export TF_SCRIPT="$HOME/project_dir/project_script.py"

export TF_FLAGS="--num_gpus=1 --batch_size=64 --num_batches=4 --data_format=NCHW"

set TensorFlow distributed parameters
export TF_NUM_PS=$1 # 1
export TF_NUM_WORKERS=$2 # $SLURM_JOB_NUM_NODES
export TF_WORKER_PER_NODE=1
export TF_PS_PER_NODE=1
export TF_PS_IN_WORKER=true

run distributed TensorFlow
DIST_TF_LAUNCHER_DIR=$SCRATCH/run_dist_tf_daint_dir
cd $DIST_TF_LAUNCHER_DIR
.
```
ToC

- Introduction
- TensorFlow overview
- Distributed training in TensorFlow
- Benchmarks
- Conclusion and Future Work
Benchmarks (1)

- Model
  - InceptionV3
    - Neural Network for 1000-class image classification (ImageNet competition)
  - Optimized code for benchmarks available from Google

- Data set
  - ImageNet: 1,280,000 images (144 GB)

- TensorFlow 1.1.0

- Performance metric
  - Number of trained images per second
Benchmarks (2)

- **Methodology**
  - For each configuration of number of Workers and number of nodes
    - Run with different number of Parameter Servers on synthetic data (no I/O access)
    - Report best setting of number of Workers and number of PSs
    - Run best setting on real data (with I/O access)

- **Results repeatability**
  - Run each test 5 times and average times together (Google’s approach)
    - Compare results with Google’s
    - Limit impact on Piz Daint (200+ tests)

- **For each test**
  - 10 warmup steps
  - Next 100 steps are averaged
Benchmarks (3)

- Systems
  - Piz Daint (NVIDIA Tesla P100 - 1 GPU per node)
  - Amazon EC2 instances
    - p2.xlarge (NVIDIA Tesla K80 - 1 GPU per node)
    - p2.8xlarge (NVIDIA Tesla K80 - 8 GPUs per node)

- Benchmarks from Google available at [https://www.tensorflow.org/performance/benchmarks](https://www.tensorflow.org/performance/benchmarks)
  - Google’s systems
    - NVIDIA DGX-1 (NVIDIA Tesla P100 - 8 GPUs per node)
    - Amazon p2.8xlarge (NVIDIA Tesla K80 - 8 GPUs per node)
Benchmarks (4)

NVIDIA Tesla P100 - synthetic data (no I/O) - up to 8 GPUs

Scalability efficiency
- 99.56% on 8 GPUs in NVIDIA DGX-1
- 92.07% on 8 GPUs in Piz Daint
- 8 nodes in Piz Daint have similar performance as an NVIDIA DGX-1
Benchmarks (5)

NVIDIA Tesla K80 - synthetic data (no I/O) - up to 8 GPUs

Scalability efficiency

- 94.58% and 94.44% on 8 GPUs in p2.8xlarge
- 93.45% on 8 GPUs in p2.xlarge
- Up to 8 GPUs, compute bound application
Benchmarks (6)

NVIDIA Tesla K80 - synthetic data (no I/O) - up to 64 GPUs

Scalability efficiency

- 92.86% and 88.55% on 64 GPUs in p2.8xlarge
- 50.96% on 64 GPUs in p2.xlarge
- Intuition: inter-node network capacity reached with 64 GPUs in p2.xlarge
Benchmarks (7)

Piz Daint (NVIDIA Tesla P100) - synthetic and real data - up to 128 GPUs

Scalability efficiency
- 80.46% (synthetic) and 72.39% (real) on 64 GPUs
- 52.11% (synthetic) and 51.63% (real) on 128 GPUs
- Intuition: inter-node network capacity reached with 128 nodes
Benchmarks (8)

**p2.xlarge (NVIDIA Tesla K80) - synthetic and real data - up to 128 GPUs**

<table>
<thead>
<tr>
<th>Number of GPUs</th>
<th>Synthetic Efficiency</th>
<th>Real Efficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>50.96%</td>
<td>51.33%</td>
</tr>
<tr>
<td>128</td>
<td>27.56%</td>
<td>28.09%</td>
</tr>
</tbody>
</table>

Intuition: inter-node network capacity reached with 64 nodes

Scalability efficiency (local SSD on each node)
- 50.96% (synthetic) and 51.33% (real) on 64 GPUs
- 27.56% (synthetic) and 28.09% (real) on 128 GPUs
Benchmarks (9)

p2.8xlarge (8 * NVIDIA Tesla K80) - synthetic and real data - up to 128 GPUs

Scalability efficiency (local SSD on each node)
- 88.55% (synthetic) and 74.39% (real) on 64 GPUs
- 85.24% (synthetic) and 73.67% (real) on 128 GPUs
- Intuition: inter-node network capacity not reached (only 16 nodes for 128 GPUs)
Benchmarks (9)

I/O overhead

- ~17% on p2.8xlarge when 8 GPUs per node are used
- ~1% on p2.xlarge
- ~11% on Piz Daint when 8 to 64 GPUs used, ~1.5% otherwise
ToC

- Introduction
- TensorFlow overview
- Distributed training in TensorFlow
- Benchmarks
- Conclusion and Future Work
Conclusion

▪ 8 nodes in Piz Daint have similar performance to 1 NVIDIA DGX-1
▪ Scalability for InceptionV3 in TensorFlow
  ▪ On Piz Daint
    ▪ Supposedly inter-node bandwidth capacity reached after 64 nodes
    ▪ I/O cost ~11%
  ▪ On a multi-GPU system
    ▪ Inter-node traffic algorithmically reduced by the number of GPUs per node (interconnect seems to have no real impact)
    ▪ Using local SSDs and 8 GPUs per node adds a constant ~17% I/O overhead (PCIe traffic)
    ▪ No benchmarks available for multiple NVIDIA DGX-1
  ⇒ Estimation according to the examined use case: Similar performance between 64 nodes on Piz Daint and 8 NVIDIA DGX-1 connected by a reasonable inter-node network

Future Work

▪ Investigate impact of training accuracy in distributed setting (preliminary results)
▪ Profile TensorFlow communication patterns
▪ Analyze influence of number of PSs for single- and multi-GPU systems
Conclusion

▪ 8 nodes in Piz Daint have similar performance to 1 NVIDIA DGX-1
▪ Scalability for InceptionV3 in TensorFlow
  ▪ On Piz Daint
    ▪ Supposedly inter-node bandwidth capacity reached after 64 nodes
    ▪ I/O cost ~11%
  ▪ On a multi-GPU system
    ▪ Inter-node traffic algorithmically reduced by the number of GPUs per node (interconnect seems to have no real impact)
    ▪ Using local SSDs and 8 GPUs per node adds a constant ~17% I/O overhead (PCIe traffic)
    ▪ No benchmarks available for multiple NVIDIA DGX-1
  ⇒ Estimation according to the examined use case: Similar performance between 64 nodes on Piz Daint and 8 NVIDIA DGX-1 connected by a reasonable inter-node network

Future Work

▪ Investigate impact of training accuracy in distributed setting (preliminary results)
▪ Profile TensorFlow communication patterns
▪ Analyze influence of number of PSs for single- and multi-GPU systems
Distributed training in TensorFlow (5)

**Round-robin variables**

- /job:ps/task:0
  - weights_1
  - biases_2

- /job:ps/task:1
  - biases_1

- /job:ps/task:2
  - weights_2

**Greedy load balancing variables**

- /job:ps/task:0
  - weights_1
  - biases_2

- /job:ps/task:1
  - biases_1

- /job:ps/task:2
  - weights_2

replica_device_setter provides two load balancing strategies
- Round-robin (default)
- Greedy load balancing

```python
greedy = tf.contrib.training.GreedyLoadBalancingStrategy(...)
with tf.device(
 tf.train.replica_device_setter(ps_tasks=3,
 ps_strategy=greedy)):
 weights_1 = tf.get_variable('weights_1', [784, 100])
 biases_1 = tf.get_variable('biases_1', [100])
 weights_2 = tf.get_variable('weights_2', [100, 10])
 biases_2 = tf.get_variable('biases_2', [10])
```