
Distributed TensorFlow: A performance evaluation
End-of-internship Seminar

Emanuele Bugliarello
emanuele.bugliarello@gmail.com

September 6, 2017 https://github.com/e-bug/distributed-tensorflow-benchmarks

https://github.com/e-bug/distributed-tensorflow-benchmarks

What is TensorFlow?
Google's open-source software library for Machine Learning
▪ Best-supported client language: Python
▪ Experimental interfaces for: C++, Java and Go

Why TensorFlow?
▪ Portable & flexible → popular in industries and in research communities
▪ Most CSCS clients choose TensorFlow as their Deep Learning library

Why distributed training?
Training a neural network can take an impractically long time on a single machine (even

with a GPU)

Results
On 64 GPUs: ~80% scalability efficiency in Piz Daint & almost 90% in 8 8-GPU nodes

Introduction

Distributed TensorFlow: A performance evaluation 2

ToC

▪ Introduction
▪ TensorFlow overview
▪ Distributed training in TensorFlow
▪ Benchmarks
▪ Conclusion and Future Work

Distributed TensorFlow: A performance evaluation 3

TensorFlow overview (1)

TensorFlow is based on data flow graphs
▪ Nodes represent mathematical operations
▪ Tensors move across the edges between nodes

Writing a TensorFlow application
1. Build computation graph
2. Run instances of that graph

Distributed TensorFlow: A performance evaluation 4

Figure 1: Computational graph for regularized Multiclass SVM loss (CS231N, Stanford University)

http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture8.pdf

import matplotlib.pyplot as plt
import numpy as np
import tensorflow as tf

===
LOAD DATA
===
Generate some data as y=3*x + noise
N_SAMPLES = 10
x_in = np.arange(N_SAMPLES)
y_in = 3*x_in + np.random.randn(N_SAMPLES)
data = list(zip(x_in, y_in))

Distributed TensorFlow: A performance evaluation 5

TensorFlow overview (2)

x

w

b

* +

f = w*x + b

y_pred quadratic
loss

y

L

L= (y - y_pred)²

Example: Linear Regression in TensorFlow

Figure 2: Computational graph for Linear Regression with squared loss

===
BUILD GRAPH
===
simple_graph = tf.Graph()
with simple_graph.as_default():
 # Generate placeholders for input x and output y
 x = tf.placeholder(tf.float32, name='x')
 y = tf.placeholder(tf.float32, name='y')

 # Create weight and bias, initialized to 0
 w = tf.Variable(0.0, name='weight')
 b = tf.Variable(0.0, name='bias')

 # Build model to predict y
 y_predicted = x * w + b

 # Use the square error as the loss function
 loss = tf.square(y - y_predicted, name='loss')

 # Use gradient descent to minimize loss
 optimizer = tf.train.GradientDescentOptimizer(0.001)
 train = optimizer.minimize(loss)

Distributed TensorFlow: A performance evaluation 6

TensorFlow overview (3)

x

w

b

* +

f = w*x + b

y_pred quadratic
loss

y

L

L= (y - y_pred)²

Example: Linear Regression in TensorFlow

Figure 2: Computational graph for Linear Regression with squared loss

===
EXECUTE GRAPH
===
Run training for N_EPOCHS epochs
N_EPOCHS = 5
with tf.Session(graph=simple_graph) as sess:
 # Initialize the necessary variables (w and b here)
 sess.run(tf.global_variables_initializer())

 # Train the model
 for i in range(N_EPOCHS):
 total_loss = 0
 for x_,y_ in data:
 # Session runs train operation and fetches values of loss
 _, l_value = sess.run([train, loss], feed_dict={x: x_, y: y_})
 total_loss += l_value
 print('Epoch {0}: {1}'.format(i, total_loss/N_SAMPLES))

 # Output final values of w and b
 w_value, b_value = sess.run([w, b])

Distributed TensorFlow: A performance evaluation 7

TensorFlow overview (4)

x

w

b

* +

f = w*x + b

y_pred quadratic
loss

y

L

L= (y - y_pred)²

Example: Linear Regression in TensorFlow

Figure 2: Computational graph for Linear Regression with squared loss

===
PLOT RESULTS
===
print(w_value, b_value) # 2.89, 0.45
plt.plot(x_in, y_in, 'bo', label='Real data')
plt.plot(x_in, x_in*w_value + b_value, 'orange',
 label='Predicted data')
plt.ylabel('y');plt.xlabel('x')
plt.title('Linear Regression')
plt.legend();plt.grid()
plt.show()

Distributed TensorFlow: A performance evaluation 8

TensorFlow overview (5)

x

w

b

* +

f = w*x + b

y_pred quadratic
loss

y

L

L= (y - y_pred)²

Example: Linear Regression in TensorFlow

Figure 2: Computational graph for Linear Regression with squared loss

Figure 3: Learned linear model

ToC

▪ Introduction
▪ TensorFlow overview
▪ Distributed training in TensorFlow
▪ Benchmarks
▪ Conclusion and Future Work

Distributed TensorFlow: A performance evaluation 9

Distributed training in TensorFlow (1)

▪ Split the training of a neural network across multiple nodes

▪ Most common approach: data parallelism
▪ Each node has an instance of the model and reads different training samples
▪ Also known as “between-graph replication” in TensorFlow

▪ Processes can either be:
▪ Worker

▪ Runs the model
▪ Sends its local gradients to the PSs
▪ Receives updated variables back

▪ Parameter Server (PS)
▪ Hosts trainable variables
▪ Updates them with values sent by the Workers

▪ PSs sum gradients to merge in one step what
each Worker has learned to reduce the loss

Distributed TensorFlow: A performance evaluation 10

/job:ps/task:0

weights_1

biases_1

/job:worker/task:0

/job:ps/task:1

weights_2

biases_2

/job:worker/task:1

Distributed training in TensorFlow (2)

▪ Workers need to send their updates to the correct Parameter Servers
▪ Use TensorFlow’s replica_device_setter for a deterministic variable allocation

▪ Parameter Servers and Workers may coexist on the same machine
▪ Recommended when Workers run on GPUs
▪ Reduce the number of nodes
▪ Minimize network communications

Distributed TensorFlow: A performance evaluation 11

/job:ps/task:0

weights_1

biases_1

/job:worker/task:0

/job:ps/task:1

weights_2

biases_2

/job:worker/task:1

/job:worker/task:0

/job:ps/task:0

/job:worker/task:1

/job:ps/task:1

Distributed training in TensorFlow (3)

Distributed TensorFlow: A performance evaluation 12

Parameter server is updated by remote clients.
Will not proceed beyond this if statement.
if job_type == 'ps':
 server.join()
else:
 # Workers only
 with tf.device(tf.train.replica_device_setter(
 worker_device='/job:worker/task:'+task_idx,
 cluster=cluster)):
 # Build your model here
 # as if you only were using a single machine

 with tf.Session(server.target):
 # Train your model here

import sys
import tensorflow as tf

Specify the cluster's architecture
cluster = tf.train.ClusterSpec(
 {'ps': ['192.168.1.1:1111'],
 'worker': ['192.168.1.2:1111','192.168.1.3:1111']})

Parse command-line to specify machine
job_type = sys.argv[1] # job type: "worker" or "ps"
task_idx = sys.argv[2] # index job in the worker or ps list
 # as defined in the ClusterSpec

Create TensorFlow Server.
This is how the machines communicate.
server = tf.train.Server(cluster, job_name=job_type,
 task_index=task_idx)

▪ Define cluster of nodes and the role of each of them (PS/Worker)
▪ The following code snippet (https://clindatsci.com/blog/2017/5/31/distributed-tensorflow)

would be executed on each machine in the cluster, but with different arguments

https://clindatsci.com/blog/2017/5/31/distributed-tensorflow

Distributed training in TensorFlow (4)

Distributed TensorFlow: A performance evaluation 13

set TensorFlow script parameters
export TF_SCRIPT="$HOME/project_dir/project_script.py"

export TF_FLAGS="--num_gpus=1 --batch_size=64
 --num_batches=4 --data_format=NCHW"

set TensorFlow distributed parameters
export TF_NUM_PS=$1 # 1
export TF_NUM_WORKERS=$2 # $SLURM_JOB_NUM_NODES
export TF_WORKER_PER_NODE=1
export TF_PS_PER_NODE=1
export TF_PS_IN_WORKER=true

run distributed TensorFlow
DIST_TF_LAUNCHER_DIR=$SCRATCH/run_dist_tf_daint_dir
cd $DIST_TF_LAUNCHER_DIR
./run_dist_tf_daint.sh

#!/bin/bash

#SBATCH --job-name=distributed_tf
#SBATCH --time=00:12:00
#SBATCH --nodes=8
#SBATCH --constraint=gpu
#SBATCH --output=distributed_tf.%j.log

Arguments:
$1: TF_NUM_PS: number of parameter servers
$2: TF_NUM_WORKER: number of workers

load modules
module load daint-gpu
module load TensorFlow

Running distributed TensorFlow on Piz Daint
▪ Write a Python script (TF_SCRIPT) accepting job_name, task_index, ps_hosts and worker_hosts TensorFlow

flags
▪ Write a Bash script like the following one; run_dist_tf_daint.sh will specify the cluster from allocated nodes

ToC

▪ Introduction
▪ TensorFlow overview
▪ Distributed training in TensorFlow
▪ Benchmarks
▪ Conclusion and Future Work

Distributed TensorFlow: A performance evaluation 14

Benchmarks (1)

Distributed TensorFlow: A performance evaluation 15

▪ Model
▪ InceptionV3

▪ Neural Network for 1000-class image
classification (ImageNet competition)

▪ Optimized code for benchmarks available
from Google

▪ Data set
▪ ImageNet: 1,280,000 images (144 GB)

▪ TensorFlow 1.1.0

▪ Performance metric
▪ Number of trained images per second

Benchmarks (2)

▪ Methodology
▪ For each configuration of number of Workers and number of nodes

▪ Run with different number of Parameter Servers on synthetic data (no I/O access)
▪ Report best setting of number of Workers and number of PSs
▪ Run best setting on real data (with I/O access)

▪ Results repeatability
▪ Run each test 5 times and average times together (Google’s approach)

▪ Compare results with Google’s
▪ Limit impact on Piz Daint (200+ tests)

▪ For each test
▪ 10 warmup steps
▪ Next 100 steps are averaged

Distributed TensorFlow: A performance evaluation 16

Benchmarks (3)

▪ Systems
▪ Piz Daint (NVIDIA Tesla P100 - 1 GPU per node)
▪ Amazon EC2 instances

▪ p2.xlarge (NVIDIA Tesla K80 - 1 GPU per node)
▪ p2.8xlarge (NVIDIA Tesla K80 - 8 GPUs per node)

▪ Benchmarks from Google available at https://www.tensorflow.org/performance/benchmarks
▪ Google’s systems

▪ NVIDIA DGX-1 (NVIDIA Tesla P100 - 8 GPUs per node)
▪ Amazon p2.8xlarge (NVIDIA Tesla K80 - 8 GPUs per node)

Distributed TensorFlow: A performance evaluation 17

https://www.tensorflow.org/performance/benchmarks

Benchmarks (4)

NVIDIA Tesla P100 - synthetic data (no I/O) - up to 8 GPUs

Scalability efficiency
▪ 99.56% on 8 GPUs in NVIDIA DGX-1
▪ 92.07% on 8 GPUs in Piz Daint
▪ 8 nodes in Piz Daint have similar performance as an NVIDIA DGX-1

Distributed TensorFlow: A performance evaluation 18

Benchmarks (5)

NVIDIA Tesla K80 - synthetic data (no I/O) - up to 8 GPUs

Scalability efficiency
▪ 94.58% and 94.44% on 8 GPUs in p2.8xlarge
▪ 93.45% on 8 GPUs in p2.xlarge
▪ Up to 8 GPUs, compute bound application

Distributed TensorFlow: A performance evaluation 19

Benchmarks (6)

NVIDIA Tesla K80 - synthetic data (no I/O) - up to 64 GPUs

Scalability efficiency
▪ 92.86% and 88.55% on 64 GPUs in p2.8xlarge
▪ 50.96% on 64 GPUs in p2.xlarge
▪ Intuition: inter-node network capacity reached with 64 GPUs in p2.xlarge

Distributed TensorFlow: A performance evaluation 20

Benchmarks (7)

Piz Daint (NVIDIA Tesla P100) - synthetic and real data - up to 128 GPUs

Scalability efficiency
▪ 80.46% (synthetic) and 72.39% (real) on 64 GPUs
▪ 52.11% (synthetic) and 51.63% (real) on 128 GPUs
▪ Intuition: inter-node network capacity reached with 128 nodes

Distributed TensorFlow: A performance evaluation 21

Benchmarks (8)

p2.xlarge (NVIDIA Tesla K80) - synthetic and real data - up to 128 GPUs

Scalability efficiency (local SSD on each node)
▪ 50.96% (synthetic) and 51.33% (real) on 64 GPUs
▪ 27.56% (synthetic) and 28.09% (real) on 128 GPUs
▪ Intuition: inter-node network capacity reached with 64 nodes

Distributed TensorFlow: A performance evaluation 22

Benchmarks (9)

p2.8xlarge (8 * NVIDIA Tesla K80) - synthetic and real data - up to 128 GPUs

Scalability efficiency (local SSD on each node)
▪ 88.55% (synthetic) and 74.39% (real) on 64 GPUs
▪ 85.24% (synthetic) and 73.67% (real) on 128 GPUs
▪ Intuition: inter-node network capacity not reached (only 16 nodes for 128 GPUs)

Distributed TensorFlow: A performance evaluation 23

Benchmarks (9)

I/O overhead

▪ ~17% on p2.8xlarge when 8 GPUs per node are used
▪ ~1% on p2.xlarge
▪ ~11% on Piz Daint when 8 to 64 GPUs used, ~1.5% otherwise

Distributed TensorFlow: A performance evaluation 24

ToC

▪ Introduction
▪ TensorFlow overview
▪ Distributed training in TensorFlow
▪ Benchmarks
▪ Conclusion and Future Work

Distributed TensorFlow: A performance evaluation 25

Conclusion
▪ 8 nodes in Piz Daint have similar performance to 1 NVIDIA DGX-1
▪ Scalability for InceptionV3 in TensorFlow

▪ On Piz Daint
▪ Supposedly inter-node bandwidth capacity reached after 64 nodes
▪ I/O cost ~11%

▪ On a multi-GPU system
▪ Inter-node traffic algorithmically reduced by the number of GPUs per node (interconnect seems to

have no real impact)
▪ Using local SSDs and 8 GPUs per node adds a constant ~17% I/O overhead (PCIe traffic)
▪ No benchmarks available for multiple NVIDIA DGX-1

▪ ⇒ Estimation according to the examined use case: Similar performance between 64 nodes
on Piz Daint and 8 NVIDIA DGX-1 connected by a reasonable inter-node network

Future Work
▪ Investigate impact of training accuracy in distributed setting (preliminary results)
▪ Profile TensorFlow communication patterns
▪ Analyze influence of number of PSs for single- and multi-GPU systems

Distributed TensorFlow: A performance evaluation 26

Conclusion
▪ 8 nodes in Piz Daint have similar performance to 1 NVIDIA DGX-1
▪ Scalability for InceptionV3 in TensorFlow

▪ On Piz Daint
▪ Supposedly inter-node bandwidth capacity reached after 64 nodes
▪ I/O cost ~11%

▪ On a multi-GPU system
▪ Inter-node traffic algorithmically reduced by the number of GPUs per node (interconnect seems to

have no real impact)
▪ Using local SSDs and 8 GPUs per node adds a constant ~17% I/O overhead (PCIe traffic)
▪ No benchmarks available for multiple NVIDIA DGX-1

▪ ⇒ Estimation according to the examined use case: Similar performance between 64 nodes
on Piz Daint and 8 NVIDIA DGX-1 connected by a reasonable inter-node network

Future Work
▪ Investigate impact of training accuracy in distributed setting (preliminary results)
▪ Profile TensorFlow communication patterns
▪ Analyze influence of number of PSs for single- and multi-GPU systems

Distributed TensorFlow: A performance evaluation 27

Thank you

Backup slides

Distributed training in TensorFlow (5)

Distributed TensorFlow: A performance evaluation 29

replica_device_setter provides two load
balancing strategies
▪ Round-robin (default)
▪ Greedy load balancing

Round-robin variables

Greedy load balancing variables

/job:ps/task:0 /job:ps/task:1 /job:ps/task:2

weights_1
biases_1

weights_2

biases_2

/job:ps/task:0 /job:ps/task:1 /job:ps/task:2

weights_1
biases_1

weights_2
biases_2

greedy = tf.contrib.training.GreedyLoadBalancingStrategy(...)
with tf.device(
 tf.train.replica_device_setter(ps_tasks=3,
 ps_strategy=greedy)):
 weights_1 = tf.get_variable('weights_1', [784, 100])
 biases_1 = tf.get_variable('biases_1', [100])
 weights_2 = tf.get_variable('weights_2', [100, 10])
 biases_2 = tf.get_variable('biases_2', [10])

