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Introduction

What is TensorFlow?
Google's open-source software library for Machine Learning
= Best-supported client language: Python
= Experimental interfaces for: C++, Java and Go

Why TensorFlow?
= Portable & flexible — popular in industries and in research communities
= Most CSCS clients choose TensorFlow as their Deep Learning library

Why distributed training?
Training a neural network can take an impractically long time on a single machine (even
with a GPU)

Results
On 64 GPUs: ~80% scalability efficiency in Piz Daint & almost 90% in 8 8-GPU nodes
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TensorFlow overview (1)

TensorFlow is based on data flow graphs

* Nodes represent mathematical operations
= Tensors move across the edges between nodes

Writing a TensorFlow application

1. Build computation graph f
2. Run instances of that graph
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Figure 1. Computational graph for regularized Multiclass SVM loss (CS231N, Stanford University)
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TensorFlow overview (2)

Example: Linear Regression in TensorFlow import matplotlib.pyplot as plt
import numpy as np

import tensorflow as tf

fEwx+b L=(y-y_pred)
X # ===============================================#
+ y—pred quadratic L # LOAD DATA #
loss H# =============—=======—=—====—=———=——=—========== #
W # Generate some data as y=3*x + noise

N_SAMPLES =10

X_in = np.arange(N_SAMPLES)

b y_in =3*x_in + np.random.randn(N_SAMPLES)
data = list(zip(x_in, y_in))

y

Figure 2: Computational graph for Linear Regression with squared loss
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TensorFlow overview (3)

Example: Linear Regression in TensorFlow L R
# BUILD GRAPH #
# ===============================================#
f=wx+b L= (y-y_pred) simple_graph = tfF.Graph()
X with simple_graph.as_default():
+ y_pred Quadratic L # Generate placeholders for input x and outputy
loss x = tf.placeholder(tf.float32, name="x")
W y = tf.placeholder(tf.float32, name='"y’)

# Create weight and bias, initialized to 0
b w = tf.Variable(0.0, name='weight')
b =tF.Variable(0.0, name='bias’)

y # Build model to predicty
y_predicted=x*w+Db

Figure 2: Computational graph for Linear Regression with squared loss
# Use the square error as the loss function
loss = tf.square(y -y_predicted, name='loss’)

# Use gradient descent to minimize loss
optimizer = tf.train.GradientDescentOptimizer(0.001)
train = optimizer.minimize(loss)
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TensorFlow overview (4)

Example: Linear Regression in TensorFlow L R
# EXECUTE GRAPH #
# ===============================================#
f=wx+b L= (y-y_pred) # Run training for N_EPOCHS epochs
X N _EPOCHS =5
+ y_pred quadratic L with tF.Session(graph=simple_graph) as sess:
loss # Initialize the necessary variables (w and b here)
W sess.run(tf.global_variables_initializer())
# Train the model
b foriin range(N_EPOCHS):
total loss =0
For x_,y_in data:
y # Session runs train operation and fetches values of loss
_, Lvalue = sess.run([train, loss], feed_dict={x:x_,y:y })
Figure 2: Computational graph for Linear Regression with squared loss total_loss += | value
print('Epoch {0}: {1}'.fFormat(i, total_loss/N_SAMPLES))
# Output final values of wand b
w_value, b_value = sess.run([w, b])
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TensorFlow overview (5)

Example. Linear Regression in TenSOrFIOW # oS ————— #
# PLOT RESULTS #
N # e T T T e T T T s s e s s T e T T e T s T e T T T s e s e e #
f=wx+b L= (y-y_pred) print(w_value, b_value) # 2.89, 0.45
X plt.plot(x_in, y_in, 'bo’, label='"Real data')
o y_pred Quadratic L plt.plot(x_in, x_in*V\{_value + b_value, 'orange’,
loss label='Predicted data')
W plt.ylabel('y');plt.xlabel('x")

plt.title('Linear Regression")
plt.legend();plt.grid()
b plt.show()

Linear Regression

® Real data °
251 Predicted data T

y
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Figure 2: Computational graph for Linear Regression with squared loss
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Figure 3: Learned linear model
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Distributed training in TensorFlow (1)

= Split the training of a neural network across multiple nodes

= Most common approach: data parallelism
Each node has an instance of the model and reads different training samples
= Also known as “between-graph replication” in TensorFlow

= Processes can either be:
= Worker

= PSs sum gradients to merge in one step what
each Worker has learned to reduce the loss
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Runs the model
Sends its local gradients to the PSs
Receives updated variables back

Parameter Server (PS)

Hosts trainable variables
Updates them with values sent by the Workers
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Distributed training in TensorFlow (2)

= Workers need to send their updates to the correct Parameter Servers
= Use TensorFlow’s replica_device_setter for a deterministic variable allocation

« Parameter Servers and Workers may coexist on the same machine
= Recommended when Workers run on GPUs
= Reduce the number of nodes

=  Minimize network communications /" liob:worker/task:0 Y\ /~ Jjob:worker/task:1

K/job:worker/task:O\ K/job:worker/taskﬂ\ @ @
/job:ps/task:0 /job:ps/task:1 /~  liob:psitask:0 Y\ /  /iob:psitask:1
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Distributed training in TensorFlow (3)

= Define cluster of nodes and the role of each of them (PS/Worker)
= The following code snippet (https://clindatsci.com/blog/2017/5/31/distributed-tensorflow)
would be executed on each machine in the cluster, but with different arguments

import sys # Parameter server is updated by remote clients.
import tensorflow as tf # Will not proceed beyond this if statement.
if job_type == 'ps":

# Specify the cluster's architecture server.join()
cluster = tf.train.ClusterSpec( else:

{'ps':['192.168.1.1:1111"], # Workers only

'worker": ['192.168.1.2:1111','192.168.1.3:1111']}) with tf.device(tf.train.replica_device setter(

worker_device='/job:worker/task:'+task_idx,

# Parse command-line to specify machine cluster=cluster)):
job_type = sys.argv[1] # job type: "worker" or "ps" # Build your model here
task_idx = sys.argv[2] # index job in the worker or ps list # as if you only were using a single machine

# as defined in the ClusterSpec
with tf.Session(server.target):
# Create TensorFlow Server. # Train your model here
# This is how the machines communicate.
server = tf.train.Server(cluster, job_name=job_type,
task_index=task_idx)
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Distributed training in TensorFlow (4)

Running distributed TensorFlow on Piz Daint
= Write a Python script (TF_SCRIPT) accepting job_name, task_index, ps_hosts and worker_hosts TensorFlow

flags
= Write a Bash script like the following one; run_dist_tf_daint.sh will specify the cluster from allocated nodes
#!/bin/bash # set TensorFlow script parameters

export TF_SCRIPT="SHOME/project_dir/project_script.py"
#SBATCH --job-name=distributed_tf

#SBATCH --time=00:12:00 export TF_FLAGS="--num_gpus=1--batch_size=64
#SBATCH --nodes=8 --num_batches=4 --data_format=NCHW"
#SBATCH --constraint=gpu
#SBATCH --output=distributed_tf.%j.log # set TensorFlow distributed parameters
export TF_NUM_PS=$1# 1
# Arguments: export TF_NUM_WORKERS=$2 # $SSLURM_JOB_NUM_NODES
# $1: TF_NUM_PS: number of parameter servers # export TF_WORKER_PER_NODE=1
# $2: TF_NUM_WORKER: number of workers # export TF_PS_PER_NODE=1

# export TF_PS_IN_WORKER=true

# load modules

module load daint-gpu # run distributed TensorFlow

module load TensorFlow DIST_TF_LAUNCHER_DIR=$SCRATCH/run_dist_tf_daint_dir
cd SDIST_TF_LAUNCHER_DIR
Jrun_dist_tf _daint.sh
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Benchmarks (1)

= Model
= InceptionV3
= Neural Network for 1000-class image "

classification (ImageNet competition)

Convolution

- Optimized code for benchmarks available
from Google

(1]

Data set
= ImageNet: 1,280,000 images (144 GB)

TensorFlow 1.1.0

Performance metric
= Number of trained images per second
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Benchmarks (2)

= Methodology

= For each configuration of number of Workers and number of nodes
= Run with different number of Parameter Servers on synthetic data (no /O access)
= Report best setting of number of Workers and number of PSs
= Run best setting on real data (with I/O access)

= Results repeatability
= Run each test 5 times and average times together (Google’s approach)
= Compare results with Google’s
= Limit impact on Piz Daint (200+ tests)

= For each test
= 10 warmup steps
= Next 100 steps are averaged
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Benchmarks (3)

= Systems
= Piz Daint (NVIDIA Tesla P100 - 1 GPU per node)
= Amazon EC2 instances

p2.xlarge (NVIDIA Tesla K80 - 1 GPU per node)
p2.8xlarge (NVIDIA Tesla K80 - 8 GPUs per node)

= Benchmarks from Google available at https://www.tensorflow.org/performance/benchmarks

= Google’s systems
NVIDIA DGX-1 (NVIDIA Tesla P100 - 8 GPUs per node)
Amazon p2.8xlarge (NVIDIA Tesla K80 - 8 GPUs per node)
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Benchmarks (4)

NVIDIA Tesla P100 - synthetic data (no 1/0) - up to 8 GPUs

Training: no 1/O (1,2,4, and 8 GPUs)
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Scalability efficiency

= 99.56% on 8 GPUs in NVIDIA DGX-1

System

= 92.07% on 8 GPUs in Piz Daint
= 8 nodes in Piz Daint have similar performance as an NVIDIA DGX-1
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Benchmarks (5)

NVIDIA Tesla K80 - synthetic data (no I/O) - up to 8 GPUs

Training: no I/O (1,2,4, and 8 GPUs) Training speedup: no I/O
GPUs per nod 22700 230.75 228.41 8 System
D ae : p2.8xlarge run by Google a
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Scalability efficiency
» 94.58% and 94.44% on 8 GPUs in p2.8xlarge
= 93.45% on 8 GPUs in p2.xlarge
= Up to 8 GPUs, compute bound application
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Benchmarks (6)

NVIDIA Tesla K80 - synthetic data (no 1/0) - up to 64 GPUs

Training: no 1/O (1,8,16,32 and 64 GPUs) Training speedup: no 1/O
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Scalability efficiency
= 92.86% and 88.55% on 64 GPUs in p2.8xlarge
= 50.96% on 64 GPUs in p2.xlarge

= [ntuition: inter-node network capacity reached with 64 GPUs in p2.xlarge
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Benchmarks (7)

Piz Daint (NVIDIA Tesla P100) - synthetic and real data - up to 128 GPUs

Training on Daint: absolute values Training on Daint: speedup
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Scalability eff|C|ency
* 80.46% (synthetic) and 72.39% (real) on 64 GPUs
= 52.11% (synthetic) and 567.63% (real) on 128 GPUs
= Intuition: inter-node network capacity reached with 128 nodes
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Benchmarks (8)

p2.xlarge (NVIDIA Tesla K80) - synthetic and real data - up to 128 GPUs

Training on p2.xlarge: absolute values Training on p2.xlarge: speedup
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Scalability eff|C|ency (Iocal SSD on each node)
= 50.96% (synthetic) and 57.33% (real) on 64 GPUs

= 27.56% (synthetic) and 28.09% (real) on 128 GPUs
= Intuition: inter-node network capacity reached with 64 nodes
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Benchmarks (9)

p2.8xlarge (8 * NVIDIA Tesla K80) - synthetic and real data - up to 128 GPUs

3500

Training on p2.8xlarge: absolute values

Training on p2.8xlarge: speedup
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Scalability efficiency (local SSD on each node)
= 88.55% (synthetic) and 74.39% (real) on 64 GPUs
= 85.24% (synthetic) and 73.67% (real) on 128 GPUs

= [ntuition: inter-node network capacity not reached (only 16 nodes for 128 GPUs)
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Benchmarks (9)

/0 overhead

1/0 overhead in distributed training

System | 17865 | | | 1739
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= ~17% on p2.8xlarge when 8 GPUs per node are used

= ~1% on p2.xlarge
= ~11% on Piz Daint when 8 to 64 GPUs used, ~71.5% otherwise
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Conclusion
= 8 nodes in Piz Daint have similar performance to 1 NVIDIA DGX-1

= Scalability for InceptionV3 in TensorFlow

= On Piz Daint
=  Supposedly inter-node bandwidth capacity reached after 64 nodes
= |/O cost ~11%
«  On a multi-GPU system
= Inter-node traffic algorithmically reduced by the number of GPUs per node (interconnect seems to
have no real impact)
= Using local SSDs and 8 GPUs per node adds a constant ~17% 1/O overhead (PCle traffic)
=  No benchmarks available for multiple NVIDIA DGX-1

= = Estimation according to the examined use case: Similar performance between 64 nodes
on Piz Daint and 8 NVIDIA DGX-1 connected by a reasonable inter-node network

Future Work
= |nvestigate impact of training accuracy in distributed setting (preliminary resuits)
= Profile TensorFlow communication patterns
= Analyze influence of number of PSs for single- and multi-GPU systems
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Conclusion_ | | o Thanf you
= 8 nodes in Piz Daint have similar performance to 1 NVIDIA DGX-1

= Scalability for InceptionV3 in TensorFlow

= On Piz Daint
=  Supposedly inter-node bandwidth capacity reached after 64 nodes
= 1/O cost ~11%
«  On a multi-GPU system
= Inter-node traffic algorithmically reduced by the number of GPUs per node (interconnect seems to
have no real impact)
= Using local SSDs and 8 GPUs per node adds a constant ~17% 1/O overhead (PCle traffic)
=  No benchmarks available for multiple NVIDIA DGX-1
= = Estimation according to the examined use case: Similar performance between 64 nodes

on Piz Daint and 8 NVIDIA DGX-1 connected by a reasonable inter-node network

Future Work
= |nvestigate impact of training accuracy in distributed setting (preliminary resuits)
= Profile TensorFlow communication patterns
= Analyze influence of number of PSs for single- and multi-GPU systems
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Distributed training in TensorFlow (5)

Round-robin variables replica_device_setter provides two load

Tob pefask Tobipsfasici lobipofasi2 balancing strategies
= Round-robin (default)
= Greedy load balancing

Greedy load balancing variables

/job:ps/task:0 /job:ps/task:1 /job:ps/task:2 . .. .
, greedy = tf.contrib.training.GreedyLoadBalancingStrategy(...)
with tf.device(
tf.train.replica_device_setter(ps_tasks=3,
ps_strategy=greedy)):
weights_1 = tfF.get_variable(‘'weights 1, [784, 100])
biases_1 = tf.get_variable('biases _1', [100])
weights_2 = tf.get_variable(‘'weights 2, [100, 10])
biases_2 = tf.get_variable('biases 2", [10])
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