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Coarse-grained vs Fine-grained Tasks

Coarse-grained  
• ALBEF (baseline) 
• BLIP (~ALBEF w/ autoregressive LM) 
Fine-grained  
• PEVL (ALBEF + bbox MLM) 
• X-VLM (ALBEF + bbox regression)

Baselines

Which models perform well on fine-grained tasks?

A person is  
riding a horse.

Coarse-grained Image Retrieval

A woman lying with a dog

Fine-grained VALSE

Caption: The cow is ahead of the person 
Label: FALSE

✔
Fine-grained VSR Fine-grained SVO-Probes

X-VLM adds 2 additional losses to ALBEF 

• BBOX: Regress object bounding box coordinates 

• VMA: Same as ALBEF but applied on Visually-Masked image regions

‣ Localisation can help fine-grained understanding 
‣ But the localisation loss matters! 
‣ More data does not help as much as modelling

Data and Losses for Fine-grained Tasks (controlled setup)

X-VLM adds 3 supervised datasets to ALBEF 

Object detection 
◦ COCOOD 
◦ VGOD 

Region description 
◦ VGRD

Dynamics of Fine-grained Tasks

Skill Datasets Correlation  
(Spearman/Pearson)

Action Replacement VALSE Action Replacement + SVO-Verbs 55 / 67

Actant Swap VALSE Actant Swap + SVO-Subjects -13 / -11

Spatial Relations: Overall VALSE Spatial Relations + VSR Average 75 / 65

Spatial Relations: Topological VALSE Spatial Relations + VSR Topological <-40

‣ Performance can fluctuate during training, even becoming worse 
‣ A single checkpoint might not be adequate for all skills! ‣ Performance on similar tasks does not always correlate

Fine-grained Winoground
some plants surrounding a 
lightbulb (a) 

a lightbulb surrounding 
some plants (b)

       (a)                                    (b)

‣ Just adding supervised data does not help 

‣ VMA is slightly more helpful than BBOX 

‣ VMA+BBOX is best

‣ VGRD is the most useful dataset

Conclusion
• X-VLM > models with more data and params
• Localisation losses can be crucial
• Fine-grained skills are learned at different times
• Modelling spatial relations is promising!
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