Google DeepMind

UNIVERSITY OF COPENHAGEN

Measuring Progress in Fine-grained Vision-and-Language Understanding

E. Bugliarello

L. Sartran

LA. Hendricks A. Nematzadeh

Coarse-grained vs. Fine-grained Tasks

Coarse-grained vs. Fine-grained Tasks

Coarse-grained Image Retrieval

A person is riding a horse.

Coarse-grained vs. Fine-grained Tasks

Coarse-grained Image Retrieval

A person is riding a horse.

Fine-grained Verb Understanding

A man *jumping* into a river.

man, jump, river

man, kayak, river

Which models perform well on fine-grained tasks?

Localisation modelling > more Web data alone

Which models perform well on fine-grained tasks?

Localisation modelling > more Web data alone

How do data and losses impact fine-grained understanding?

Both data and losses needed; data diversity also matters

Which models perform well on fine-grained tasks?

Localisation modelling > more Web data alone

How do data and losses impact fine-grained understanding? Both data and losses needed; data diversity also matters

How does fine-grained understanding evolve during training? Performance can fluctuate during training, even becoming *worse*

Fine-grained Tasks

Fine-grained Tasks

• VALSE

A small copper vase There are four / six zewith some flowers / bras. exactly one flower in it.

6 phenomena: existence, plurality, counting, relations, actions, coreference

Fine-grained Tasks

- VALSE
- VSR

Figure 2: Caption: *The cow is ahead of the person.* Label: False.

65 relationships in 7 different categories (*e.g.*, adjacency, proximity)

Fine-grained Tasks

- VALSE
- VSR
- SVO-Probes

A small copper vase There are four / six zewith some flowers / bras. exactly one flower in it.

Figure 2: Caption: *The cow is ahead of the person.* Label: False.

A woman **lying** with a dog

421 verbs with hard negatives for different parts of speech (subject, verb, object)

Fine-grained Tasks

- VALSE
- VSR
- SVO-Probes
- Winoground

Tests a compositionality across 6 linguistic and visual phenomena

Fine-grained Tasks

- VALSE
- VSR
- SVO-Probes
- Winoground

Coarse-grained Retrieval Tasks (Flickr30K, COCO)

Coarse-grained Models

• ALBEF (baseline)

Coarse-grained Models

- ALBEF (baseline)
- BLIP (~ALBEF but w/ autoregressive LM)

Coarse-grained Models

- ALBEF (baseline)
- BLIP (~ALBEF but w/ autoregressive LM)

Fine-grained Models

Newly proposed fine-grained models do not test on fine-grained tasks!

Coarse-grained Models

- ALBEF (baseline)
- BLIP (~ALBEF but w/ autoregressive LM)

Fine-grained Models

• PEVL (ALBEF + bbox MLM)

Coarse-grained Models

- ALBEF (baseline)
- BLIP (~ALBEF but w/ autoregressive LM)

Fine-grained Models

- PEVL (ALBEF + bbox MLM)
- X-VLM (ALBEF + bbox regression)

Coarse-grained Models

- ALBEF (baseline)
- BLIP (~ALBEF but w/ autoregressive LM)

Fine-grained Models

- PEVL (ALBEF + bbox MLM)
- X-VLM (ALBEF + bbox regression)

Other coarse-grained Models (BLIP-2, ClipCap, Flamingo)

Which models perform well on fine-grained tasks?

How do data and losses impact fine-grained understanding?

How does fine-grained understanding evolve during training?

Which models perform well on fine-grained tasks?

Localisation modelling > more Web data alone

How do data and losses impact fine-grained understanding?

How does fine-grained understanding evolve during training?

Which models perform well on fine-grained tasks?

Localisation modelling > more Web data alone

How do data and losses impact fine-grained understanding?

How does fine-grained understanding evolve during training?

- Object detection
 - \circ COCO_{OD}
 - $\circ \quad VG_{\text{OD}}$
- Region description
 - $\circ ~~VG_{RD}$

X-VLM adds 3 supervised datasets and 2 additional losses to ALBEF

- Object detection
 - COCO_{OD}
 - VG_{OD}
- Region description

 VG_{RD}

VG_{RD} is the most useful dataset Similar performance to training on all datasets

X-VLM adds 3 supervised datasets and 2 additional losses to ALBEF

object-centric visual view: an image region (not the whole image) is used

X-VLM adds 3 supervised datasets and 2 additional losses to ALBEF

 Just adding supervised data does not help

- Just adding supervised data does not help
- L_{VMA} is slightly more helpful than L_{BBOX}

- Just adding supervised data does not help
- L_{VMA} is slightly more helpful than L_{BBOX}
- L_{VMA} + L_{BBOX} is best

What Matters for Fine-grained V&L Understanding?

Which models perform well on fine-grained tasks?

Localisation modelling > more Web data alone

How do data and losses impact fine-grained understanding?

Both data and losses needed; data diversity also matters

How does fine-grained understanding evolve during training?

What Matters for Fine-grained V&L Understanding?

Which models perform well on fine-grained tasks?

Localisation modelling > more Web data alone

How do data and losses impact fine-grained understanding? Both data and losses needed; data diversity also matters

How does fine-grained understanding evolve during training?

Different Skills, Different Patterns

Different Skills, Different Patterns

A single checkpoint might not be adequate for all skills!

946

What Matters for Fine-grained V&L Understanding?

Which models perform well on fine-grained tasks?

Localisation modelling > more Web data alone

How do data and losses impact fine-grained understanding? Both data and losses needed; data diversity also matters

How does fine-grained understanding evolve during training?

Performance can fluctuate during training, even becoming worse

Conclusion

Strong multimodal models trained at scale struggle with fine-grained understanding

- Supervised losses are promising
- As is **descriptive language** (region descriptions)

Fine-grained skills are learned at different times

- Pay attention to learning dynamics!
- How can we consistently improve over all fine-grained skills?

