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Coarse-grained vs. Fine-grained Tasks

Coarse-grained Image Retrieval Fine-grained Verb Understanding

A person is riding a horse.

man, jump, river man, kayak, river
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e VSR

Label: False.

Figure 2: Caption: The cow is ahead of the person.
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Benchmarks

Fine-grained Tasks
e VALSE

e VSR

e SVO-Probes

A small copper vase  There are four/ six ze-

with some flowers /  bras.
exactly one flower in
it.

Figure 2: Caption: The cow is ahead of the person.

Label: False.

A woman lying with a dog
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Benchmarks

Fine-grained Tasks
e VALSE

e VSR
e SVO-Probes

e Winoground

A small copper vase  There are four/ six ze-
with some flowers /  bras.

exactly one flower in

it.

Figure 2: Caption: The cow is ahead of the person.

Label: False.

(a) some plants
surrounding a
lightbulb

A

(b) a lightbulb surrounding some plants
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Benchmarks

Fine-grained Tasks
e VALSE

e VSR
e SVO-Probes

e Winoground

Coarse-grained Retrieval Tasks (Flickr30K, COCO)

A small copper vase  There are four/ six ze-

with some flowers /  bras.
exactly one flower in
it.
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Figure 2: Caption: The cow is ahead of the person.

A woman lying with a dog

(%
{ # & -

)

)

Label: False.
(a) some plants (b) a lightbulb surrounding some plants

surrounding a
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Baselines

Coarse-grained Models
e ALBEF (baseline)
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A cat
looking at
the laptop.
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vM <> LM

A cat
[MASK] at
the laptop.
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Coarse-grained Models

e ALBEF (baseline)
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Baselines

L ALBEF (baseline) v La> v ) vm e > v

Coarse-grained Models TS ALBEF — <0~

e BLIP (~ALBEF but w/ autoregressive LM)

Fine-grained Models
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Baselines
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Other coarse-grained Models (BLIP-2, ClipCap, Flamingo)
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What Matters for Fine-grained V&L Understanding?

Which models perform well on fine-grained tasks?
How do data and losses impact fine-grained understanding?

How does fine-grained understanding evolve during training?
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Which models perform well on fine-grained tasks?

VALSE Accuracy
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Which models perform well on fine-grained tasks?

VALSE Accuracy

_________________________________________________________________

. Localisation can help fine-grained understanding
But localisation loss matters! !
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Data and Losses for Fine-grained Tasks

X-VLM adds 3 supervised datasets and 2 additional losses to ALBEF
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Data and Losses for Fine-grained Tasks

X-VLM adds 3 supervised datasets and 2 additional losses to ALBEF

e Object detection
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Data and Losses for Fine-grained Tasks

X-VLM adds 3 supervised datasets and 2 additional losses to ALBEF

e Object detection
O COCOOD 70
O VGOD §
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55
VGpp is the most useful dataset 50

. Similar performance to training
on all datasets




Data and Losses for Fine-grained Tasks

X-VLM adds 3 supervised datasets and 2 additional losses to ALBEF

- | XM )
r[ovm <eL> v M ]
; 5 A cat A cat
*— looking at ® [MASK] at
=5\ the laptop. ==\ the laptop.
ey

O

36



Data and Losses for Fine-grained Tasks

X-VLM adds 3 supervised datasets and 2 additional losses to ALBEF
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Data and Losses for Fine-grained Tasks

X-VLM adds 3 supervised datasets and 2 additional losses to ALBEF
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. object-centric visual view: an image
\ region (not the whole image) is used

__________________________________________________



Data and Losses for Fine-grained Tasks

X-VLM adds 3 supervised datasets and 2 additional losses to ALBEF
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X-VLM adds 3 supervised datasets and 2 additional losses to ALBEF
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Data and Losses for Fine-grained Tasks

X-VLM adds 3 supervised datasets and 2 additional losses to ALBEF
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Data and Losses for Fine-grained Tasks

X-VLM adds 3 supervised datasets and 2 additional losses to ALBEF
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What Matters for Fine-grained V&L Understanding?
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Localisation modelling > more Web data alone

How do data and losses impact fine-grained understanding?

Both data and losses needed; data diversity also matters
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Conclusion

Strong multimodal models trained at scale struggle with fine-grained understanding

e Supervised losses are promising
e Asis descriptive language (region descriptions)

Fine-grained skills are learned at different times

e Pay attention to learning dynamics!
e How can we consistently improve over all fine-grained skills?
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