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Abstract

The Mandelbrot set is at the heart of fractal-like structures and many people have
generated breathtaking drawings by sampling the complex numbers in it. In this project,
we present a parallel implementation of the “escape time” algorithm, one of the algorithms
used to produce such drawings. Our application is coded in C and makes use of the MPI
standard and the CUDA platform. The source code is available in the c4science repository
at: https://c4science.ch/diffusion/3860/mndlbrt.git

1 Scientific Background

The Mandelbrot set is the set of complex numbers c for which the function fc(z) = z2 + c does
not diverge when iterated from z = 0 [1]. That is, if we denote the Mandelbrot set by M , then
by repeatedly applying the quadratic map{

z0 = 0
zn+1 = zn + c,

for any complex number c, we have that c ∈M ⇐⇒ lim supn→∞ |zn+1| ≤ 2.

To generate Mandelbrot set images, we can sample the complex numbers and iterate this
function for each point c that has been sampled. If the function goes to infinity, then the point
belongs to the set. Each sampled point can then be represented on a 2D plane by treating its
real and imaginary parts as image coordinates (x + yi) and coloring the corresponding pixel
according to how quickly the sequence z2n + c diverges.
Two examples of such representation are shown in Figure 1. In particular, points belonging
to the set are colored in black, while points not in the set are colored according to how many
iterations are required for the absolute values of the corresponding sequences to become greater
than a cutoff value (2).

There exist many algorithms to draw the Mandelbrot set. Since our goal is to produce a
parallel implementation in CUDA [2] and MPI [3], we use one of the simplest algorithms to
generate a pictorial representation of the Mandelbrot set: the “escape time” algorithm. In fact,
this algorithm results in an embarrassingly parallel problem: each pixel does not depend on any
other, allowing each thread in the GPU to run its computations independently and avoiding
exchanging ghost cells when MPI is used. The pseudocode of this algorithm follows.
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(a) Red-shaded drawing. (b) Smooth, blue-shaded drawing.

Figure 1: Mandelbrot set drawings generated with our palettes.

Algorithm 1 Escape Time algorithm

1: for each pixel (Px, Py) on the screen do
2: x0 ← scaled x coordinate of pixel
3: y0 ← scaled y coordinate of pixel
4: x← 0.0
5: y ← 0.0
6: iteration← 0
7: while (x× x+ y × y < 2× 2 AND iteration < max iteration) do
8: xtemp ← x× x− y × y + x0
9: y ← 2× x× y + y0

10: x← xtemp
11: iteration← iteration+ 1

12: color ← palette[iteration]
13: plot(Px, Py, color)

Where z = x+ iy, c = x0 + iy0, x = Re(z2 + c) and y = Im(z2 + c).
Note that we keep iterating up to a fixed number of steps. Hence, we decide that a sampled
point is “probably” in the Mandelbrot set after max iteration iterations.

2 Implementations

The application is coded in C [4] and three main classes of implementations are developed:

• Serial versions.

• GPU versions using the CUDA parallel computing platform.

• Hybrid versions using both CUDA and MPI (including MPI-IO).

The code has been fully debugged using the gdb debugger. The Valgrind tool has been used
to make sure that all heap blocks are freed and hence no memory leaks are possible.

2.1 Serial implementations

We start by implementing a naive version of the described algorithm and two plotting functions:
a simple one with a red hue (Figure 1a), and a smoother version in blue1 (Figure 1b). While the
latter is prettier, it needs the real and imaginary values reached by each pixel in the quadratic
map, thus requiring, in a first implementation, the allocation of two additional matrices of
doubles (one for the real and one for the imaginary parts) of the same size as the total number
of pixels. Throughout this project, we produce smooth, blue drawings as in Figure 1b.

1It uses an approximation of the Normalized Iteration Count method presented in [5].
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Figure 2: Periods of hyperbolic compo-
nents [1].

Optimization level Execution time [s]

-O0 422.91
-O1 230.99
-O2 208.96
-O3 208.49
-O3 -ftree-vectorize 205.41

Table 1: Execution times of opti3 for a 25600 × 14400-
pixel image and max iteration = 10, 000 as a function of
the optimization level.

Beside the standard optimizations (such as vectorization), we exploit the characteristics of the
problem at hand in order to further improve the performance.

Firstly, as we can see from the pictures above, the resulting figure is symmetric with respect
to the x axis. Then, we only compute the values for half of the specified height and fill the
other half of the image during the plotting phase. We refer to this first optimization as opti1.

Secondly, it is possible to skip the calculations for the points lying within the cardioid or in
the period-2 bulb (marked with 1 and 2, respectively, in Figure 2).
To do so, before passing a point to the escape time algorithm, we first check whether one of the
following equations hold: 

q
(
q +

(
x− 1

4

))
< 1

4y
2

(x+ 1)2 + y+2 < 1
16 ,

where q =
(
x− 1

4

)2
+ y2, and x and y represent the real and the imaginary parts of the point.

The first equation in the system determines if the point is within the cardioid, while the second
one determines if it is within the period-2 bulb. The two shapes cover ≈ 34% of the total area.
3rd- and higher-order bulbs do not have equivalent tests because they are not perfectly circular.
We refer to the implementation using this optimization and the previous one as opti2.

Finally, we apply some finer-grained optimizations. In the above pseudocode, y is computed
with two multiplications and one addition. Since multiplications are more expensive than ad-
ditions, we would like to replace them by additions. Here, we can remove one multiplication
in lieu of an addition: we firstly assign x × y to y, then we add y to itself (hence removing
the multiplication by 2), and finally add y0. Moreover, since we need x2 and y2 both in the
while condition and in xtemp, we add two variables to store them so as to avoid recomput-
ing two multiplications. By doing so, we only have three multiplications per loop, which is
the minimum that can be achieved in this algorithm. We also employ fast array indexing while
plotting the image. The implementation using all the described optimizations is denoted opti3.

The performances of the presented optimizations are compared in Figure 3. As we can
see, each of these optimizations reduces the time to solution. In particular, we halve the time
to solution when we evaluate the escape time only on half image, and a drastic reduction is
observed when we avoid evaluating the escape time for the sampled numbers lying within the
cardioid or in the period-2 bulb as each of them would reach max iteration otherwise.

Each of serial implementations used in generating this figure were compiled using gcc and
setting the compiler’s optimization level to -O3 with the loop vectorizer (-ftree-vectorize).
In fact, this gives the best performance for each of them. As an example, Table 1 illustrates
the execution times for opti3 as it is compiled with different optimization levels.

We also compare the times to solution of opti3 both when the resulting image is drawn and
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(a) (b)
Figure 3: Time to solution for the different serial implementations with respect to (a) the number of
pixels (max iteration=10,000) and (b) max iteration (368,640,000 pixels).

when the execution stops just after evaluating the color of each pixel: the two curves basically
overlap suggesting that the writing time is negligible.

3 Prior results

We run our implementations on the Deneb cluster at EPFL, whose specifics are [6]:

• 376 compute nodes, each with (i) 2 Ivy Bridge processors running at 2.6 GHz, with 8
cores each, and (ii) 64 GB of DDR3 RAM.

• 144 compute nodes, each with (i) 2 Haswell processors running at 2.5 GHz, with 12 cores
each, and (ii) 64 GB of DDR4 RAM.

• 16 GPU accelerated nodes, each with 4 K40 NVIDIA cards.

• Infiniband QDR 2:1 connectivity.

• GPFS filesystem.

• Total peak performance: 293 TFLOPs (211 in CPUs, 92 in GPUs).

3.1 Theoretical computational cost

In this section, we try to estimate the computational cost of the escape time algorithm. In
particular, we consider the opti3 implementation of the algorithm.
For the sake of simplicity, let’s consider generating square figures, where width and height have
N pixels. Due to the previous symmetry optimization, the algorithm is called N × N

2 times.

An approximation of the theoretical cost can be obtained by considering a worst-case sce-
nario where each sampled complex number that is neither in the cardioid nor in the period-2
bulb iterates max iteration times.

In evaluating the computational cost, we assume the following costs per operation [7]:

• addition, subtraction, comparison (1);

• multiplication, division by 2 (4).

In our implementation of the escape time algorithm, we have:

• 5 sums, 4 multiplications and 2 divisions by 2 to initialize the variables of each pixel;

• 5 sums, 1 subtraction, 2 comparisons and 5 multiplications to check if the pixel is within
the cardioid or in the period-2 bulb;

• 5 sums, 1 subtraction, 2 comparisons and 3 multiplications in each iteration.
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Note that these are simple approximations and the real cost of each operation actually depends
on the computer architecture. Furthermore, we are ignoring the cost of conditional statements
which lead to expensive branch mispredictions.
That said, an estimation of the computational cost for an N ×N -pixel image is then given by:

≈ (c+ 0.76×max iteration)× N2

2
Where 0.76 is the percentage of pixels that are neither in the cardioid nor in the period-2 bulb

and c ≈ 57. Hence, the algorithm’s computational cost is O(N2) and so linear in the number
of pixels (as we expected from its formulation).

Note that this cost does not take into account the expensive operation to determine the
smooth color for each pixel and the additive time needed to store the matrix of iterations as an
image, which are also O(N2). Memory requirements are in the order of O(N2) too.

Finally, if we fix the size of the image, then the computational time increases linearly with
the value of max iteration. All these relationships are confirmed by the curves in Figure 3.

3.2 Strong scaling

Strong scaling means using parallel computing to run a problem faster than on a single core.
Strong scaling is usually equated with Amdahl’s Law, which specifies the maximum speedup
that can be expected by parallelizing portions of a serial program:

Sp =
1

α+ 1−α
p

=
T1
Tp

Where α is the fraction of non-parallelizable code, p is the number of processors, and T1 and
Tp are the execution times on one and p processors, respectively.

Hence, we need to estimate the fraction of non-parallelizable code α. The core of the
algorithm is intrinsically parallel because of the independence of the computations between the
pixels. However, serial sequences are present as well to (i) allocate and deallocate the variables,
(ii) set the corresponding number of iterations in the other half of the image and (iii) store the
resulting image onto disk. The impact of the serial part will be more and more evident as the
size of the image (number of pixels) increases.
We use gprof to obtain an estimation of the value of α. In particular, we do this when drawing
both a 4K image (8, 294, 400 pixels) and a 25600× 14400 image (368, 640, 000 pixels). In both
cases we set max iteration to 10, 000. The value of α is estimated to be 0 in the former case,
while equal to 1.91 in the latter; hence suggesting a perfect speedup for relatively small images.
Figure 4 shows the expected speedup in these two scenarios.

Figure 4: Expected speedup for small (α = 0%) and large (α = 1.91%) images from Amdahl’s law.
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3.3 Weak scaling

Weak scaling is what we refer to when we are talking about using parallel computing to run a
larger problem in the same amount of time as a smaller one on a single core. In other words,
it is a measure of how the time to solution changes as more processors are added to a system
with a fixed problem size per processor.

We expect a significant speedup also in this case, but we are somehow limited by the size of
the images we can create. So, we can instead increase the complexity of the problem by choosing
larger values of max iteration. Knowing that the peak number of floating-point operations per
second in one TESLA K40 GPU card is 1.43 TFLOPs for double-precision and 4.29 TFLOPs
for single-precision [8], while having a peak of 211

376×2×8+144×2×12 ≈ 22.3 GFLOPs in a single
core of CPU in the Deneb cluster, we can predict solving problems that are ≈ 66 (double-
precision) or ≈ 197 (single-precision) times larger on the GPU in the same time as a reference
problem on a single CPU core. Despite this wide gap, we should remember that these are
theoretical predictions and several issues will actually limit the parallel performance, such as
memory communication overheads and load balancing.

4 Going parallel

After having debugged, profiled and optimized our serial code, we can proceed with the paral-
lelization phase. In fact, since each element in the array is independent of all the others, our
algorithm leads to an embarrassingly parallel formulation.

4.1 CUDA implementations

We start parallelizing our code with CUDA; once this version is optimized, we will add MPI.

Firstly, we just port opti3 to CUDA. We do so by parallelizing the core of the algorithm:
that is, evaluating the escape times for each of the points in the bottom half of the figure. This
version is still far from optimal: most of the time spent by the serial code is in computing the
color associated to a given iteration value and this part is still done serially. Moreover, we still
use three matrices: one for the escape times, one for the real parts reached by the quadratic
mappings and one for the corresponding imaginary parts. Sending three matrices on the PCIe
bus surely does not lead to high performance computing, but this version serves as a first work-
ing CUDA implementation of the algorithm.

After debugging this version, we proceed implementing a new one: opti4. In this version,
all the workload is carried out by the GPU. The only values exchanged by the between CPU
and the GPU are the chars representing the RGB values for each pixel in the bottom half of the
image. The code is split into serial part (.c) and parallel part (.cu), compiled with gcc and
nvcc, respectively, and then linked together into one executable. To do so, we need a C wrapper
for the kernel that allows the CPU to share parameters with the CUDA part. Moreover, all the
constant values are copied to the Constant memory: a read-only, quick cache that can broadcast
to all active threads.
When we profile this application with nvprof, we notice that it is compute-bound: that is, its
arithmetic intensity is underneath the peak performance ceiling in the Roofline model.

Finally, we move from a double-precision to a single-precision representation with opti5.
Strictly speaking, the resulting drawings are different from the previous ones but no human
being would be able to tell the difference between two images produced using double-precision
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(a) (b)
Figure 5: Time to solution for the CUDA implementations with respect to (a) the number of pixels
(max iteration=10,000) and (b) max iteration (368,640,000 pixels) with block size 512× 1.

and single-precision operands. We make this shift to single precision in order to maximize in-
struction throughput (as we described above and it is suggested in [9]).
The resulting optimization is still compute-bound.

The performances of the presented CUDA optimizations are compared in Figure 5.

We complete our study on CUDA by tuning the block size used by opti5. This is a cru-
cial hyperparameter that leads to performance improvements and it is determined by both the
problem at hand and the specifics of the used GPU. A properly set block size leads to in-
creased occupancy; i.e., the ratio between the number of active warps per multiprocessor and
the maximum number of active warps. Table 2 presents the achieved occupancy as a function
of the block size for two image sizes when launched on Deneb. The winning size is 256×1.
We make use of nvprof to evaluate the occupancy. Even though larger image sizes and higher
max iteration would lead to a more accurate evaluation of the achieved occupancy, we had
to set max iteration to only 10, 000 in order for nvprof to evaluate this metrics. Neverthe-
less, the highest achieved occupancy is close to 66%, which is enough to usually saturate the
bandwidth [10]. Further, one should look at increasing occupancy only if the the kernel is
bandwidth-bound, which is not our case.

Block size Occupancy [%]
2560x1440 25600x14400

32x1 18.05 18.81
64x1 25.41 32.65
128x1 31.82 51.52
192x1 34.85 56.01
256x1 36.15 58.80
384x1 35.62 57.30
512x1 28.76 52.37
1024x1 8.39 25.50
8x8 19.04 20.12
16x16 26.91 25.93
32x32 5.91 7.74

(a)

Block size Execution time [s]
2560x1440 25600x14400

32x1 2.53 79.61
64x1 2.29 50.32
128x1 2.10 37.52
192x1 2.05 36.56
256x1 2.04 35.91
384x1 2.11 36.60
512x1 2.17 37.69
1024x1 5.65 90.60
8x8 4.09 237.72
16x16 2.45 97.12
32x32 7.48 270.24

(b)

Table 2: (a) Occupancy and (b) execution time for two image sizes as the block size varies.
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(a) (b)
Figure 6: Time to solution for the hybrid implementations with respect to (a) the number of pixels
(max iteration=10,000) and (b) max iteration (368,640,000 pixels) with block size 256× 1.

4.2 Hybrid implementations

After having optimized on a single GPU, we introduce an additional layer of parallelization: we
distribute the computations over different CPUs and GPUs with MPI. Specifically, we split the
bottom half of the image to all the reserved GPUs by rows, and so each GPU receives the same
number of pixels 2.
Each GPU node on Deneb has two processors and four GPUs. We then distribute opti5 so as
to make use of the resources available on a single node; we do so with two versions.

Firstly, we distribute the image to the two processors and each of them uses one GPU to
evaluate the escape times and the corresponding colors. We provide two implementations: a first
implementation using non-blocking, point-to-point communications where the processor with
rank 0 receives the image parts in an out-of-order fashion. In particular, no MPI Barrier() is
used. The second implementation, instead, makes use of parallel I/O to increase the writing
performance on the GPFS parallel file system.

Secondly, we distribute the image to the two processors and each of them uses two GPUs.
That is, each processor is in charge of half of the bottom half image, which is then further split
to the two GPUs. In this scenario, to achieve the highest performance, all the CUDA functions
are asynchronous (with no barrier or thread synchronization used). Also this version comes
with both the centralized, non-blocking implementation and the one using parallel I/O.

The performances of the hybrid implementations are shown in Figure 6, where we can see
that the benefits of using multiple GPUs is manifested only for massive loads.

5 Final results

In this section, we present the results we obtained for scaling when CUDA and MPI are used.
The results using multiple GPUs versions are obtained from the parallel I/O implementations.

Figure 7 presents the results for strong scaling: specifically, for a 25600× 14000-pixel image
and max iteration = 10, 000, 000.
Figure 7a shows how increasing the number of GPUs affects the speedup: here, we can see that
the speedup obtained using four GPUs is higher than the ideal one. This can be explained by

2If dividing the number of rows by the number of GPUs does not return an integer, the remaining rows are
assigned as uniformly as possible among all the GPUs.
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(a) (b)
Figure 7: Strong scaling as (a) the speedup for an increasing number of GPUs (via MPI) and (b) the
reduced time to solution of the same problem (25600× 14000-pixel image, max iteration = 10, 000, 000)
for the different implementations.

the fact that all the CUDA functions are called asynchronously in this version and both the
multi-GPU versions use two processors.
Figure 7b illustrates how the time to solution varies from the serial version to the hybrid version.

Finally, to evaluate the effect of weak scaling, we fix the image size to 368, 640, 000 pixels
and determine the value of max iteration that allows each version to execute in around 76
seconds. The results are reported in the figure below.

Figure 8: Weak scaling as a function of the problem size that can be solved in the same amount of time
by the different implementations.

6 Resources budget

In order to fulfill the requirements of our project, we present hereafter the resource budget.

6.1 Computing Power

The parallel implementations are compute-bound; hence, powerful GPUs are required.

6.2 Raw storage

The main requirement in terms of raw storage is due to the output images. The largest image
that we generate is 2.1 GB.
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6.3 Grand Total

Total number of requested GPUs 4

Temporary disk space for a single run 3 GB

Permanent disk space for the entire project 50 GB

Communications MPI

License MIT

Code publicly available ? Yes

Library requirements CUDA & MPI

Architectures where code ran Deneb

7 Scientific outcome

The aim of this project is to gain experience and expertise on CUDA and MPI while develop-
ing applications in a supercomputer. Throughout the development process, we have acquired
familiarity with different tools for profiling and optimizing serial and parallel applications, as
well as different technologies (such as non-blocking communications and parallel I/O in MPI).
All the skills that we have mastered in this context will constitute a fundamental basis for real
submissions in larger high performance computing centers.
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