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Scientific Background



Definition

The Mandelbrot set is the set of complex numbers c for which the

function fc(z) = z2 + c does not diverge when iterated from z = 0.

If we denote the Mandelbrot set by M , then by repeatedly applying

the quadratic map {
z0 = 0

zn+1 = zn + c,

∀ complex number c, we have c ∈M ⇐⇒ lim supn→∞ |zn+1| ≤ 2.
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Generating Mandelbrot set images

• Sample complex numbers and iterate this function for each point

c. If the function goes to infinity, the point belongs to the set.

• Each sampled point can be mapped on a 2D plane:

◦ Treat its real and imaginary parts as image coordinates (x + yi)

◦ Color this pixel according to how quickly z2n + c diverges

(a) Red-shaded (b) Smooth, blue-shaded

Figure 1: Mandelbrot set drawings generated with our palettes.
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The Escape Time Algorithm

Algorithm 1 Escape Time algorithm

1: for each pixel (Px, Py) on the screen do

2: x0 ← scaled x coordinate of pixel

3: y0 ← scaled y coordinate of pixel

4: x← 0.0

5: y ← 0.0

6: iteration← 0

7: while (x× x+ y × y < 2× 2 AND iteration < max iteration) do

8: xtemp ← x× x− y × y + x0

9: y ← 2× x× y + y0
10: x← xtemp

11: iteration← iteration+ 1

12: color ← palette[iteration]

13: plot(Px, Py, color)

Where z = x+ iy, c = x0 + iy0, x = Re(z2 + c) and y = Im(z2 + c).

Embarrassingly parallel problem: each pixel independent of any other.
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Implementations



Implementations overview

Three main classes of implementations are developed:

• Serial versions.

• GPU versions using the CUDA parallel computing platform.

• Hybrid versions using both CUDA and MPI (including MPI-IO).

The application is coded in C.

Code fully debugged and profiled using gdb and gprof.

Valgrind used to make sure no memory leaks are possible.
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Serial Implementations (1)

• naive.

• opti1: Exploit symmetry with respect to the x axis.

• opti2: Skip calculations for the points lying within the cardioid

or in the period-2 bulb (≈ 34% of the total area).

• opti3: Finer-grained optimizations: reduce to 3 multiplications

per loop (minimum) & use fast array indexing in plotting.

Figure 2: Periods of

hyperbolic components.

Optimization level Execution time [s]

-O0 422.91

-O1 230.99

-O2 208.96

-O3 208.49

-O3 -ftree-vectorize 205.41

Table 1: Execution times of opti3

(368.64M pixels, max iteration=10, 000)

as a function of the optimization level.

6



Serial Implementations (2)

(a) (b)

Figure 3: Time to solution for the different serial implementations with

respect to (a) the number of pixels (max iteration=10,000) and (b)

max iteration (368,640,000 pixels).
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Going Parallel



CUDA Implementations (1)

• opti3: Parallelize escape time evaluation only.

◦ Colors computed serially

◦ 3 matrices sent on the PCIe bus

• opti4: All workload carried out by the GPU.

◦ Only exchange RGB values of the bottom part on the PCIe bus

◦ Use Constant memory to store constant values on the GPU

◦ Code split into serial (.c) & parallel (.cu) parts; needs C wrapper

• opti5: Single-precision implementation of opti4.

◦ Maximize instruction throughput

◦ Cannot distinguish between double- and single-precision images

Application profiled with nvprof: compute-bound.
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CUDA Implementations (2)

(a) (b)

Figure 4: Time to solution for the CUDA implementations with respect to

(a) the number of pixels (max iteration=10,000) and (b) max iteration

(368,640,000 pixels) with block size 512 × 1.
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CUDA block size tuning for opti5

Block size:

• hyperparameter leading to performance improvements, increasing

occupancy
(

active warps
maximum active warps

)
• It depends on both the problem and the specifics of the GPU

Block size Occupancy [%]

2560x1440 25600x14400

32x1 18.05 18.81

64x1 25.41 32.65

128x1 31.82 51.52

256x1 36.15 58.80

512x1 28.76 52.37

1024x1 8.39 25.50

8x8 19.04 20.12

16x16 26.91 25.93

32x32 5.91 7.74

Block size Execution time [s]

2560x1440 25600x14400

32x1 2.53 79.61

64x1 2.29 50.32

128x1 2.10 37.52

256x1 2.04 35.91

512x1 2.17 37.69

1024x1 5.65 90.60

8x8 4.09 237.72

16x16 2.45 97.12

32x32 7.48 270.24

Table 2: Occupancy and execution time for two image sizes as the block

size varies for max iteration=10, 000. Evaluated using nvprof.
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Hybrid Implementations (1)

Distribute the computations over different CPUs and GPUs with MPI.

• Image split to the 2 processors in a node, each uses 1 GPU.

◦ Non-blocking, point-to-point communications where rank

0-processor receives the image parts out-of-order 1

◦ Parallel I/O

• Image split to the 2 processors in a node, each uses 2 GPUs.

Highest performance: all the CUDA functions are asynchronous 2

◦ Non-blocking, point-to-point communications where rank

0-processor receives the image parts out-of-order 1

◦ Parallel I/O

Figure 5: Image split to CPUs (orange) and GPUs (orange or green).

1No MPI Barrier() used.
2No syncthreads() used.
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Hybrid Implementations (2)

(a) (b)

Figure 6: Time to solution for the hybrid implementations with respect to

(a) the number of pixels (max iteration=10,000) and (b) max iteration

(368,640,000 pixels) with block size 256 × 1.
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Results



Strong Scaling

(a) (b)

Figure 7: Strong scaling as (a) the speedup for an increasing number of

GPUs (via MPI) and (b) the reduced time to solution of the same problem

(368.64M -pixel image, max iteration=10 × 106) for the different versions.
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Weak Scaling

Figure 8: Weak scaling as a function of the problem size that can be

solved in the same amount of time (76 s) by the different versions.
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Conclusion & Future Work

Conclusion

• Implement and optimize serial, CUDA and CUDA+MPI applications

• Gain experience with CUDA and MPI in a supercomputer

• Acquire familiarity with profiling tools

• Investigate different technologies

◦ Non-blocking communications and parallel I/O in MPI

◦ Asynchronous functions in CUDA

Future Work

• Experiment with 2D grids

• Investigate the impact of external libraries

• Explore different algorithms

Thank you
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