
Lower bound computation for SecureRide: A cheat-proof ride-hailing service

Concetto Emanuele Bugliarello, Anh Pham, Italo Dacosta
Privacy Protection (CS-622), Mini-project, Fall 2016, EPFL, Switzerland

{emanuele.bugliarello, thivananh.pham, italo.dacosta}@epfl.ch

Abstract—Ride-hailing services have become widely used.
Such services, however, rise security issues such as the risk
of drivers cheating on their trips to increase their fares. In
this report, we propose a solution to partially tackle this
issue by computing a lower bound on the traveled distance
based on geometric algorithms and cryptographic techniques.
Combining the lower bound with an upper bound will then
provide a reliable way to detect cheating. Our system relies on
existing Wi-Fi access point networks deployed in urban areas
and we evaluate our solution by using real datasets from the
FON community networks and a set of GPS updates from taxis
in Rome. We report the accuracy of our solution along with a
sensitivity analysis of the density of access points along trips.

I. INTRODUCTION

Over the last decade, the spread of smartphones with
increasing capabilities has given rise to new services,
aiming for a better life. Location-based services (LBSs)
offer very high utility for users, providing entertainment,
navigation aid, and activities based on the real-time location
of the user. More recently, ride-hailing services, a new type
of LBSs, are increasingly used by people. As the name
suggests, ride-hailing consists in a person who hails a car
and is immediately picked up and driven to their destination
for a time and distance-based fare. Basically, this type
of services aims to offer an alternative to the traditional
taxi services. For example, among the companies offering
such services, as of August 2016, Uber Technologies Inc.
(shortly, Uber) is the most popular provider in Europe and
in the U.S.A. [1], and is available in over 66 countries and
545 cities worldwide. When a person requests a ride, the
service provider forwards it to all the drivers that are close
to the person’s position to reduce their waiting time. In
the current form of such systems, the driver’s smartphone
collects and sends the driver’s locations (during the ride) to
the service provider (SP). The SP is then responsible for
computing the fare due for the ride according to the data
received from the driver.

Although ride-hailing services are getting more and
more popular, an important issue comes with them: drivers
might be tempted to cheat when reporting their positions
to over-charge the riders. This would endanger the viability
of the system for the service provider and its affiliates, as
well as its attractiveness to other users. To cheat about the
locations sent to the service provider, the driver can tweak

her smartphone to report erroneous GPS information. Such
attacks have already been reported for Uber drivers in San
Francisco in 2014, where they sent fake locations to pick
more clients at the airport [2].

In this report, we propose an infrastructure-based
approach to tackle the security issues given by dishonest
drivers willing to lie about on their positions, while allowing
the service provider to compute accurate approximations
of the total distance of the trip without relying on the
smartphone of the driver. Our approach relies on existing
wireless access point (AP) networks and on street map
networks. Our approach consists of two phases: first,
drivers obtain secure proofs of locations during their
rides, by relying on a lightweight message exchange
protocol between a driver’s smartphone and Wi-Fi access
points encountered in the trip; second, the service provider
computes secure and accurate lower bound and upper bound
on the total distance covered in the ride. In particular, in
this report, we show results related to the lower bound
on the traveled distance and leave the computation of the
upper bound as a future work.

The contribution of this report can be characterized by
three main results. Firstly, we provide a very effective
visualization tool that is essential in analyzing and
debugging distances traveled by drivers in the real street
maps. Secondly, we provide a Python implementation that
can be easily extended to the upper bound computation.
Finally, we evaluate our lower bound solution on a dataset
of real taxi traces collected in Rome (Italy) and available
on Crawdad[3]. It consists of GPS locations of 316 taxis
in February 2014 with an average interval of 15 seconds
between two consecutive GPS updates (for a given taxi). We
also extract the actual locations of a network of deployed
Wi-Fi APs operated by FON[4]. Experimental results show
that our solution achieves a median accuracy of 55.21%.
Even though this does not seem a good accuracy, we
anticipate here that our solution is evaluated on traces
which are not always comparable to real rides. We also
conduct a sensitivity analysis to assess the effect of the
distribution of access points on the performance of our
solution.

The remainder of the report is organized as follows. We

1

first present the closest studies to our work, and we introduce
the system and adversarial models. We then present our solu-
tion and report on its evaluation in terms of its performance,
and of its security properties. After that, we present in more
detail our contributions and discuss some of the challenges
related to this work. Finally, we present directions for future
work and conclude this report.

II. RELATED WORK

Our report builds on top of SecureRun [5] by Anh Pham,
Kévin Huguenin, Igor Bilorevic and Jean-Pierre Hubaux,
which proposes a solution for privacy and cheating issues
in the context of location-based apps. In particular, we rely
on the mechanisms they propose to prevent users from
cheating on their location updates to also prevent drivers
in ride-hailing services. Specifically, we rely on the same
infrastructure of access points that provide Location Proofs
to users inside their coverage area, and we make use of
their public key cryptography algorithms to generate such
location proofs. In the following, we do not describe such
algorithms, so the interested reader can refer to this paper.

Our solution is very close to the work presented in the
Master’s thesis of Louis Magarshack [6]. Even though we
follow a very similar approach, we develop our solution
de novo. In fact, not only is his code written in Julia,
but, most importantly, many relevant steps related to data
cleansing and applied approximations are missing. Finally,
the performances of his solution are evaluated on traces
of 2.4 km, though it is not specified how these distances
are computed. Consequently, his results are not easily
reproducible.

Related to our work is the study conducted by Balash
et al. on electronic toll pricing [7]. In this study, they
try to eliminate the delay on toll roads by collecting
tolls electronically in a privacy-preserving way by using
modern cryptographic primitives. The system is based
on a tamper-evident black box that collects the billing
information when the car transit a toll. Such data is then
sent to the service provider to bill the user.

Saroiu and Wolman [8] present different scenarios where
users of LBS might have an incentive to engage in location
cheating. To ensure the presence of a user in a given
region, they propose a protocol for providing location proofs
based on beaconing of information over the Wi-Fi SSID
of dedicated access points (APs). The proof of presence is
based on the fact that only devices in the access point’s
proximity can receive these beacon signals. Our solution
relies on this protocol to certify that at a specific time, the
user is at a specific geographical location.

III. SYSTEM ARCHITECTURE

In this section, we describe the entities involved in our
system: a ride-hailing service provider, a driver, a rider and
a Wi-Fi AP network operator.

A. Driver

The driver is similar to a traditional taxi driver but she is
not always required to hold a special license, like the ones
necessary to drive a taxi. Thus, it is usually easier to join
a ride-hailing service as a driver but there are still different
requirements to be satisfied, and they vary between service
providers and countries. The driver then just needs to login
into the service provider’s app and wait for ride requests.

As we describe in the following, drivers are supposed to
send their locations to the service provider to compute the
fare for the ride. We then consider drivers equipped with
smartphones having GPS and Wi-Fi enabled. Hence, they
can locate themselves and communicate with nearby Wi-Fi
access points.

B. Rider

The rider is any person that wants a ride from her location
towards a given destination. To request a ride, as long as
she has an account with the service provider, she logs into
the service provider’s app and specifies the pickup location.
In the most popular services, specifying the destination is
optional.

C. Ride-hailing Service Provider

The principal role of the ride-hailing service provider (SP)
is to match riders’ requests with drivers’ availabilities. A
common metric used in these matchings is the time the rider
has to wait for a driver to reach her pickup point. The other
main role of the SP is to compute the fare of the trip as
a combination of a base fare, the distance traveled during
the trip and its duration. Each of these quantities is time and
location dependent. Typically, fares are computed as follows:

Fare = base+ x× distance+ y × duration

The distance is measured from the location updates sent by
the driver’s smartphone to the SP.

D. Wi-Fi AP Network Operator

We rely on one or multiple Wi-Fi network operators
controlling a set of fixed Wi-Fi APs deployed in the regions
where the ride-hailing service providers operates. Each AP is
aware of its geographic position and of its communication
radius. For Wi-Fi communications, we assume a unit-disc
model where a driver and an AP can communicate only if
their distance is less than a given radius R, constant across
all drivers and Wi-Fi APs.

Moreover, as in [5], we also assume that APs can com-
pute public-key cryptographic operations to provide location
proofs.

2

IV. ADVERSARIAL MODEL

We now describe the adversarial model in the described
scenario.

• Drivers. Drivers are considered malicious, being able
to spoof their locations to increase the computed fare.

• Riders. Even riders can behave maliciously by attack-
ing the driver’s smartphone to force it to send wrong
location updates so that the total distance is less than
the true one. This can be achieved by either spoofing
or jamming the GPS signal of the driver’s smartphone.
Hence, riders are also assumed to be malicious.

• Service providers. Even though the revenue of SPs
is based on taking a commission out of every fare, we
consider them to be honest because it is in their interest
to avoid overcharging riders; they would opt for other
service providers.

• Access point operators. Access point operators are
assumed to be honest. APs are then assumed to follow
the protocol specified in our solution.

V. OUR SOLUTION

In this section, we present our approach to provide a driver
cheat-proof lower bound on the total distance in a ride-
hailing service. First, we give an overview of our solution.
Then, we describe the details of the operations involved. .

A. Overview

The following is a general description of our solution.
During a trip, the driver communicates with the Wi-Fi access
points located along her route to obtain location proofs (LP).
A location proof is a digitally signed message, delivered by
an access point, that certifies that the user is, at a given time
t, in a given range of an access point located at a given
position (lat, lon). Finally, the driver sends all the location
proofs she has collected in her trip to the service provider,
which then computes a lower-bound and an upper-bound of
the total distance.

By comparing the location sent by the driver’s smartphone
with the lower and upper bounds obtained from the location
proofs, the service provider can then spot a dishonest driver.
Such comparison can be performed either at the end of the
trip, so that the rider directly pays an amount determined by
the service provider in case the driver cheated; or afterwards
and, for instance, the service provider repays the rider the
difference between the amount she paid and the one it
determines. To obtain tight bounds, the service provider can
combine location proofs from different access points in a
short interval of time into a more precise location proof by
means of intersection techniques, as shown in Figure 1.

B. Location Proofs

At each sampling time (determined by a sampling algo-
rithm), a driver collects location proofs from APs in her

LP1 LP2

AP ranges

LP areas

AP

Figure 1: Location proof areas when the driver collects a LP
from one AP only (LP1) and when she collects LPs from
two APs in a short time interval (LP2).

communication range. To do so, she periodically broadcasts
location proof requests and all the access points in her range
reply with digitally signed messages containing a timestamp
t indicating when the request is processed by the AP and its
coordinates.

In the unit-disc communication model, such proof certifies
that, at time t, the driver is in a disc of radius R, centered
at the coordinates of the access point.

C. Tight Bounds

We now describe how we can obtain accurate bounds be-
tween two points in a map (identified by their coordinates).
To do so, we rely on street map networks. In these networks,
each crossroad is associated with a node and each street is
defined by two such consecutive nodes. Additionally, other
nodes can be included in the streets to better define them,
especially if they are not straight lines (see Figure 2).

+
-

Leaflet (http://leafletjs.com) | Map tiles by Stamen Design (http://stamen.com), under CC BY 3.0 (http://creativecommons.org/licenses/by/3.0). Data by OpenStreetMap (http://openstreetmap.org), under CC BY SA
(http://creativecommons.org/licenses/bysa/3.0).

Figure 2: Street map representation of a portion of Rome.
Green triangles represent the nodes with which Open-
StreetMap represents streets in this area.

By considering the underlying street map, we can compute
accurate paths that the driver can take between two points,
instead of relying on the flight distance between them.

3

LP1 LP2

AP ranges

LP areas

Original nodes

Added nodes

Figure 3: Additional nodes (purple) are introduced at the
intersections of the location proof areas and streets.

Furthermore information such as the direction of travel
(in case a street is one way only) and the maximum speed
allowed in a street can improve the bounds on the total
traveled distance. In fact, the first one avoids considering
paths that would involve streets taken in opposite directions,
while the latter provides an optimal lower bound of the time
needed to go down a street, thus also removing possible
paths that cannot be taken in a certain amount of time.

In addition, we add nodes on lines between two crossroads
every 0.5 seconds. This gives a denser representation of
streets in a map, resulting in tighter lower and upper bounds.

Finally, to make sure we can compute precise lower
bounds, we add nodes at the intersections of the perimeter
of each location proof area with the underlying streets, as
shown in Figure 3. In fact, the driver might request a location
proof while she is at the perimeter of the location proof area
and not having a node there would denote her as a possible
cheater while still being honest. Such nodes vary from ride
to ride, depending on the location proofs sent by the driver.

D. Lower-bound Computation

Finally, we describe how the service provider can compute
accurate lower bounds on the total distances. Given the street
map representation described above, the service provider can
represent, for instance, each city as a directed graph where
vertices are nodes of the street map network (including the
ones giving a dense representation) and edges represent the
streets. In particular, each edge is weighted by a lower bound
on the time needed to reach the next node, computed as the
haversine distance1 between the coordinates of the endpoints
divided by the maximum speed allowed in that street. The
haversine distance is computed as described in Algorithm 1
where RE is the Earth’s radius in meters, and the returned
distance is also in meters. For each ride, the service provider
receives the starting location, the destination location, the
location updates and the location proofs.
• Firstly, the service provider maps the starting and

destination locations to their closest vertices in its graph
(based on the haversine distance).

1It calculates the great-circle distance between two points – that is, the
shortest distance over the Earth’s surface.

Algorithm 1 Haversine distance
Inputs: xLat, xLon (source coordinates),

yLat, yLon (destination coordinates)
Output: haversine distance between source and destination

1: RE = 6371000
2: θ1 ← xLat× π

180
3: θ2 ← yLat× π

180
4: δθ ← (yLat− xLat)× π

180
5: δλ ← (yLon− xLon)× π

180

6: a← sin2
(
δθ
2

)
+ cos (θ1)× cos (θ2)× sin2

(
δλ
2

)
7: c← 2× arctan

(√
a√

1−a

)
8: distance← RE × c
9: return distance

• Secondly, it defines location proof areas as previously
shown in Figure 1. To do so, if multiple location proofs
differ by a short time interval, the service provider
considers a more precise location proof area given
by the intersection of the coverage areas of the APs
providing these location proofs. Otherwise, it simply
considers as location proof area the unit-disc of radius
R and centered at the AP signing the location proof.

• Given a location proof area, the SP adds nodes to the
graph at the coordinates given by the intersections of
this area with the underlying streets. The coordinates
of these new nodes can be found as follows:

– For each street in the trace, the SP defines a line
based on the coordinates of the street’s endpoints.

– If the location proof area consists of only one
AP, the service provider simply adds nodes at all
the intersections of the circumference of the AP
coverage disc with these lines.

– If the location proof area consists of multiple
APs, the service provider firstly computes all the
intersections of the APs with the lines.
∗ If the driver’s location is not at a crossroad, the

SP adds a node at the first intersection at the
top-left of the driver’s location, and a node at
its first intersection at the bottom-right.

∗ If the driver’s location is at a crossroad, the SP
adds a node at the closest intersection to the
driver’s location for each street in the intersec-
tion.

This now gives the final graph for the considered ride.
• Finally, the service provider defines location proof

nodes for a location proof area as the nodes inside it.
To compute the lower bound on the traveled distance, the
service provider computes:

1) The shortest path between the node representing the
starting location and the set of nodes defying the first2

2Recall that location proofs include timestamps.

4

+
-

Leaflet (http://leafletjs.com) | Map tiles by Stamen Design (http://stamen.com), under CC BY 3.0 (http://creativecommons.org/licenses/by/3.0). Data by OpenStreetMap (http://openstreetmap.org), under CC BY SA
(http://creativecommons.org/licenses/bysa/3.0).

Figure 4: Trace visualization, using Stamen Watercolor tiles.

location proof area.
2) The shortest path between all the nodes in any two

consecutive location proof areas.
3) The shortest path between the nodes belonging to the

last location proof area and the node representing the
final destination.

However, if any of these shortest paths takes more time than
the time the driver actually spent to drive between them,
we consider instead the flight distance between the nodes
representing the endpoints of this path. In principle, this
provides a lower accuracy but it is actually fundamental to
obtain a robust computation when the GPS location reported
by the driver’s smartphone is not very precise (in the order
of a few meters).

The lower bound is then given by the sum of the
distances covered in each of these shortest paths.

This is indeed a lower bound because (i) the distances
covered inside the location proof areas are not counted, (ii)
the path between any two consecutive location proof areas
is the shortest one between them, and (iii) the edges of the
graph are weighted by the minimum time needed to travel
from one node to its successor. It is, though, a tight bound
because (i) we consider the underlying street map (instead
of considering location proofs in straight lines), and (ii) we
consider additional information associated to each street,
such as its direction and the maximum allowed speed.

VI. VISUALIZATION TOOLS

In devising our solution, it is of primary importance to
properly visualize different traces to make sure the algorithm
is correct. In fact, visualization tools help us in fine-tuning
the algorithm and handle corner case, obtaining a final
solution that is reliable and robust.

To satisfy this need, we have developed a function, based
on folium [9], which plots an interactive map in the format

+
-

Leaflet (http://leafletjs.com) | Map tiles by Stamen Design (http://stamen.com), under CC BY 3.0 (http://creativecommons.org/licenses/by/3.0). Data by OpenStreetMap (http://openstreetmap.org), under ODbL
(http://www.openstreetmap.org/copyright).

Figure 5: Trace visualization, using Stamen Toner tiles.

of a HTML page. An example taken from a trace is shown
in Figure 4.

Here, green triangles represent the original OSM nodes
(without nodes every 0.5 seconds), purple ones instead
represent the new nodes that we add at the intersections
of APs’ areas (blue circles) with streets, yellow pentagons
represent the location updates from the taxi driver, white
streets are one-way only, while gold ones are two-ways.
Another representation of the same map is shown in Figure
5, which uses different tiles. The only difference here is that
one-way roads are in pink, while two-way roads are in cyan.

These maps are interactive in the sense that they provide
additional information by clicking on the elements we
add. It is possible to associate to each element any desired
textual value. In particular, for each AP, our function shows
the AP id in the database and its coordinates; for each taxi
GPS coordinate, it shows its ordinal value (0 for the first
one in the trace, etc.) and its coordinates; and for each
OSM node, it shows its id in the database and its coordinates.

VII. PERFORMANCE EVALUATION

To evaluate the accuracy of the proposed solution, we
use traces of taxi drivers in Rome (assuming each of them
represents a driver of a ride-hailing service) and the network
of access points of the FON operator. The scenario we
analyze has drivers equipped with Wi-Fi and GPS enabled
smartphones, to collect location proofs, which are then sent
along with location updates to the service provider.

A. Datasets

To assess the performance of our solution, we use a
subset of data that has been previously collected at LCA
1, as described in the following. In particular, we remove,
from the full data sets, elements that fall outside a region
approximating the city of Rome (Italy). This region is shown

5

+
-

Leaflet (http://leafletjs.com) | Map tiles by Stamen Design (http://stamen.com), under CC BY 3.0 (http://creativecommons.org/licenses/by/3.0). Data by OpenStreetMap (http://openstreetmap.org), under ODbL
(http://www.openstreetmap.org/copyright).

Figure 6: Approximation of the city of Rome as the circle
having radius of 11.5 km and centered at (41.89, 12.49).

in Figure 6 and is defined as the circle having radius of
11.5 km and centered at (41.89, 12.49).

1) Wi-Fi access points: We have available the coordinates
of the Wi-Fi access points from the FON operator in 2016.
FON is a large community network with more than 20
million hotspots worldwide, most of them located in Europe.
FON establishes strategic partnerships with local ISPs so
that routers of the ISPs act as FON hotspots. Since ISPs
control the routers through firmware updates, they could
easily implement our solution.
By applying the geographic filter for Rome specified above,
we obtain 44, 243 APs in Rome. Their density can be
observed in the heat-map in Figure 7.

2) Drivers traces: As mentioned in the Introduction, we
use a data set of taxi traces in Rome available on Crawdad.
They refer to 316 taxis and consist of GPS coordinates
relative to their positions in February 2014.
This data just consists of GPS coordinates, and so we firstly
split them into traces. By looking at when the position of a
taxi driver does not change in consecutive GPS updates, it
could be possible to identify when a client is dropped off.
However, the time to drop a person off has usually the same
duration as the time a taxi driver waits at traffic lights.
Thus, we decide to split these GPS updates according to
the distribution of average trip distances by yellow taxis
in New York City in 2014 [10]. This is a skewed normal
distribution, which can be approximated by the one shown
in Figure 8. Distances here are computed as the sum of the
flight distances between any two consecutive GPS updates.
Instead of just applying this distribution to our data set,
we also check that no two consecutive GPS points have
timestamps that differ by more than 1 hour. In fact, it is
very reasonable to assume that the same trip does not have
two consecutive GPS updates in that interval. In case we
notice such gap, we split the trace at that point and we keep

0 50 100 150 200

0

50

100

150

D
e
n
si

ty
 o

f
A

P
s

(A
P
s/

km
2

)

0

5

10

15

20

25

30

35

40

Figure 7: Heat-map of the density of FON access points in
Rome.

it only if its total distance is at least as long as the minimum
average trip (0.75 km in our case).

Lastly, since some GPS coordinates in the dataset also
fall outside Rome, we remove traces containing any point
falling outside the Rome region defined above.

The resulting number of traces is finally equal to 176, 603.
3) Street map network: To represent the underlying street

map, we rely on OpenStreetMap [11]. OpenStreetMap is a
collaborative project to build a free map of the world. Map
data is collected from scratch by volunteers using tools such
as a GPS unit, a notebook, or a digital camera. The data is
then entered into the OpenStreetMap database.
OpenStreetMap uses a topological data structure, with four
core elements:
• Nodes are points with a geographic position, stored as

WGS 84 [12] coordinates (the same used by the GPS).
• Ways are ordered lists of nodes, representing a polyline,

or possibly a polygon if they form a closed loop. They
are used both for representing linear features such as
streets and rivers, and areas, like forests and parks.

• Relations are ordered lists of nodes, ways and relations.
Relations are used for representing the relationship
of existing nodes and ways. Examples include turn
restrictions on roads and areas with holes.

• Tags are key-value pairs. They are used to store meta-
data about the map objects (such as their type, their
name and their physical properties).

At LCA 1, we have available a PostgreSQL [13] database
containing OSM data structures relative to streets only.
However, they do not exclusively refer to Rome and so we
filter out data outside our Rome region. In particular, we
only keep ways that have at least one node inside the region.

Moreover, when building the graph for Rome, we notice
that it is not fully connected. This is because these maps

6

0 2 4 6 8 10 12 14

distance [km]

0.00

0.05

0.10

0.15

0.20

0.25

0.30

p
ro

p
o
rt

io
n
 o

f
tr

ip
s

[%
]

Figure 8: Distance distribution of the average trip distances
by yellow taxis in NYC in 2014.

are based on data collected from volunteers, who can forget
to associate a node in an intersection to all its streets; thus
possibly creating a network partition. Our solution then uses
the giant component of the graph for Rome, containing
793, 433 nodes instead of the original 811, 306 ones.

B. Methodology

We use Jupyter notebooks for developing our solution.
Such documents contain both computer code (Python in our
case) and rich text elements (paragraphs, equations, figures,
links, etc...). They are both human-readable, containing the
analysis description and the results (figures, tables, etc..),
as well as executable, which can be run to perform data
analysis. We have written several notebooks, each tackling
a different aspect of our project. To name a few, we have
notebooks showing step by step how we build the graph,
how we split the GPS updates into traces, how we add nodes
every 0.5 seconds to the original graph, and many more.

The notebooks are written in Python and we also have
self-contained Python scripts that can be launched to obtain
the final results we are interested in and useful intermediate
structures. Moreover, we have written two libraries contain-
ing all the functions that can be helpful in addressing lower
bound computations in our system. Specifically, we have
functions that interact with the databases available at LCA 1.
For instance, it is possible to retrieve all the OSM nodes,
APs or taxi GPS updates lying inside a box of specified
coordinates; to retrieve all the streets and their metadata
containing a specific set of OSM nodes, or to retrieve the
APs which have a taxi GPS coordinate in their unit-disc
coverage area. Given a taxi trace, there are methods to
compute densities of APs inside that trace, both in numbers
of APs/km2 and APs/km. We have functions that define
the location proof areas and the nodes lying inside each of

them; another function builds the graph, and we can also
modify it by adding additional nodes at their correct street
positions with respect to the already existing ones. Data
cleaning and handling of missing values is handled by a
single method, as it is the computation of the shortest path
between consecutive location proofs.

Several of these functions also come with a dual represen-
tation which is database-free. In fact, we also store the fil-
tered data used by our final solution in the form of pickle
files. These are compact binary encodings of Python data
structures. By using the database-free representation of such
functions and these binary files, we can run our code in any
machine, without locally installing the full database.

The libraries alone contain more than 1, 700 lines of code
(LOC), while the script iterating through all the taxi traces
computing their accuracies is around 250 LOC.

Finally, we expect our implementation to be easily
extended to the upper bound computation in this scenario.

Hence, for each taxi, we split its collected GPS updates
according to the distribution in Figure 8 and simulate the
execution of our solution. For each resulting trace, we
compute an approximation of the real traveled distance, its
tight lower bound and densities of APs. We consider a 25-
meter radius unit-disc communication model for the FON
access points. The performance of our solution is measured
in terms of accuracy of the lower bound with respect to the
estimated real traveled distance. The accuracy is then a value
between 0 and 100%.

C. Results

To assess the performance of our solution on 1, 000
randomly selected traces from the set of splitted traces.
The cumulative distribution function of the accuracy for
all the traces is shown in Figure 9 (left). To analyze the
sensitivity of our solution with the density of APs, we plot
the experimental density functions of the accuracy for three
different ranges of number of APs per km. By looking at
Figure 9 (right), it is clear that the performance is much
better for traces having high density of APs. In fact, even
though the number of traces having more than 20 APs per
km are few, their accuracy is of at least 79%. Moreover, by
comparing the two plots, it is possible to see that most of
the traces contain less than 6 APs/km. Having such small
density of access points is one of the main reasons that give
low accuracy on the lower bound computation.

D. Poorly performing scenarios

By means of our visualization tools, we have manually
investigated some cases where the accuracy of the lower
bound is below 50%.

Figure 10 shows the final part of a trace giving around
40% accuracy. It is clear from the map why it is the case.
In fact, the driver reaches a train station and spends most

7

0 20 40 60 80 100
accuracy [%]

0

20

40

60

80

100

p
ro

p
o
rt

io
n
 o

f
tr

a
ce

s
[%

]

0 20 40 60 80 100
accuracy [%]

0

20

40

60

80

100

p
ro

p
o
rt

io
n
 o

f
tr

a
ce

s
[%

]

0-10 AP/km

10-20 AP/km

>20 AP/km

Figure 9: Cumulative distribution functions of the accuracy for all the traces (left), and of the traces grouped by their density
of access points per km (right).

+
-

Leaflet (http://leafletjs.com) | Map tiles by Stamen Design (http://stamen.com), under CC BY 3.0 (http://creativecommons.org/licenses/by/3.0). Data by OpenStreetMap (http://openstreetmap.org), under ODbL
(http://www.openstreetmap.org/copyright).

Figure 10: Visualization of a trace not linked to a ride.

of the time driving around the station. Here, there is no
access point and thus all those GPS updates (the majority in
that trace) would be discarded and the approximation would
consist of the path between the last available location proof
and the last GPS update in the trace.

Hence, this gives us a reasonable explanation of why our
results are not very accurate: given that we have GPS updates
from taxi drivers, many of them are not linked to actual rides
but to drivers moving around the city, waiting for a client.
We can then say that many of the traces we have created by
splitting GPS updates as in Section VII-A2 are noisy: they
do not correspond to real rides and thus are not relevant in
assessing the performance of our solution.

By looking at another trace, we notice that the GPS units
used by the taxi drivers may not be extremely precise and

+
-

Leaflet (http://leafletjs.com) | Map tiles by Stamen Design (http://stamen.com), under CC BY 3.0 (http://creativecommons.org/licenses/by/3.0). Data by OpenStreetMap (http://openstreetmap.org), under ODbL
(http://www.openstreetmap.org/copyright).

Figure 11: Visualization of a trace having GPS updates
mapped into a different street.

this could cause very poor approximations. The trace we
now discuss is shown below, in Figure 11. In this trace,
several GPS updates are located across two one-way streets.
What happens here is that some of them are mapped into
the wrong street. Thus, if the driver is going towards north
east along the road on the left and the following update
is mapped onto the road on the right, the algorithm has to
travel all the road until it is possible to turn and go back
to that point. Now, if the following point is in the road on
the left, the algorithm has to do the same thing. However,
if it is in the same road on the right, drivers cannot simply
go in that direction since the street is one-way only and so
the algorithm has to find a way to turn and reach the next
location. And so on.

8

It is clear then how the lower bound distance would
explode in such situations. This is why we have introduced
the flight distance in our algorithm. That is, if the time
needed to go between two points by taking the shortest path
in the street map network is larger than the time the driver
actually needed, then we do not have a lower bound anymore
and so we compute instead the flight distance between these
two points. Such change improved our accuracy by 20% on
the traces of one taxi that we tested with both versions.

VIII. CHALLENGES

During the development of our solution, we have faced
several challenges.

One of the most important is related to discovering that
the graph for the city of Rome is not fully connected. This
means that is not possible to go from any given point to any
other given point in the same city. By analyzing one of the
traces, we detect that some nodes at street intersections are
not mapped to all the streets, hence causing some partition
of the network if the unconnected streets are one-way only.
Our solution then just considers the giant component of the
graph of Rome, which contains 97.8% of the original OSM
nodes.

Working with coordinates and geometrical structures is
intrinsically difficult from a programming point of view. In
fact, many concepts that are intuitive and easy to visualize on
a blackboard are actually all but trivial to code. For instance,
one of the most challenging part of our project is to add
artificial nodes at the intersections between a location proof
area and the underlying streets. In fact, the concept of area
and street are not defined in the binary world. What we have,
instead, is just a collection of points, expressed in terms of
latitudes and longitudes. So, we firstly need to define what
a location proof area is, especially when multiple APs have
their coverage areas intersecting. Then, we need to define
the concept of street and compute the intersection of each
possible street with the perimeter defined by location proof
area. More details about this algorithm are given in Section
V-C describing how we achieve tight bounds. The function
for just finding such intersections requires 150 LOC.

IX. CONCLUSION AND FUTURE WORK

Ride-hailing services have become increasingly popular
over the last few years. In their current form, such systems
rely on the drivers mobile devices to collect and to report
the locations during the trip. This provides no security
guarantee against cheaters. In this report, we propose a
solution for providing secure rides. Our solution relies
on the existing wireless access point networks (at the
cost of only a software upgrade, hence alleviating the
need for deploying ad-hoc infrastructures), and it provides
protection for both riders and service providers. Our
experimental evaluation, conducted using real datasets of
deployed wireless access points and GPS updates from

taxi drivers, shows that our solution does not achieve high
accuracy. However, several traces do not refer to actual
rides, thus making our performance questionable. From
a practical perspective, we envision our scheme to be of
possible interest for strategic partnerships between ride-
hailing service providers and access point network operators.

As part of future work, we plan to (i) assess the perfor-
mance of our solution on the entire dataset of taxi traces, (ii)
further improve the accuracy of our solution by optimizing
lower bound distances by computing the longest possible
shortest path between two points, (iii) compute the upper
bound of the traveled distance, and (iv) evaluate our solution
on a dataset of traces corresponding to real rides.

REFERENCES

[1] O. Zaleski and A. Tartar. Uber is now the most popular
taxi app in 108 countries, data show. [Online]. Avail-
able: https://www.bloomberg.com/news/articles/2016-08-23/
uber-is-the-most-popular-ride-hailing-app-in-108-countries

[2] W. Phaneuf. Uber drivers ’cheating’ the app to gain fares
at sfo. [Online]. Available: http://sfist.com/2014/07/30/uber
still illegally working sfo al.php

[3] L. Bracciale, M. Bonola, P. Loreti, G. Bianchi, R. Amici,
and A. Rabuffi. Dataset of mobility traces of taxi cabs in
rome, italy. [Online]. Available: http://crawdad.org/roma/taxi/
20140717/

[4] Fon Wireless Ltd. Fon. [Online]. Available: https://fon.com/

[5] A. Pham, K. Huguenin, I. Bilogrevic, and J.-P. Hubaux, “Se-
cure and private proofs for location-based activity summaries
in urban areas,” Proceedings of the 2014 ACM International
Joint Conference on Pervasive and Ubiquitous Computing,
pp. 751–762, 2014.

[6] L. Magarshack, “Secureride: A cheat-proof ride-hailing ser-
vice,” Master’s thesis, 2016.

[7] J. Balasch, A. Rial, C. Troncoso, and C. Geuens, “Pretp:
Privacy-preserving electronic toll pricing,” USENIX Security,
2010.

[8] S. Saroiu and A. Wolman, “Enabling new mobile applications
with location proofs,” Proceedings of the 10th ACM workshop
on Mobile Computing Systems and Applications, 2009.

[9] Python-visualization. Folium. [Online]. Available: https:
//github.com/python-visualization/folium

[10] N. T. . L. Commission. 2014 taxicab fact book. [Online].
Available: http://www.nyc.gov/html/tlc/downloads/pdf/2014
taxicab fact book.pdf

[11] O. Foundation. Openstreetmap. [Online]. Available: https:
//www.openstreetmap.org

[12] Wikipedia. World geodetic system. [Online]. Available:
https://en.wikipedia.org/wiki/World Geodetic System

[13] ——. Postgresql. [Online]. Available: https://en.wikipedia.
org/wiki/PostgreSQL

9

https://www.bloomberg.com/news/articles/2016-08-23/uber-is-the-most-popular-ride-hailing-app-in-108-countries
https://www.bloomberg.com/news/articles/2016-08-23/uber-is-the-most-popular-ride-hailing-app-in-108-countries
http://sfist.com/2014/07/30/uber_still_illegally_working_sfo_al.php
http://sfist.com/2014/07/30/uber_still_illegally_working_sfo_al.php
http://crawdad.org/roma/taxi/20140717/
http://crawdad.org/roma/taxi/20140717/
https://fon.com/
https://github.com/python-visualization/folium
https://github.com/python-visualization/folium
http://www.nyc.gov/html/tlc/downloads/pdf/2014_taxicab_fact_book.pdf
http://www.nyc.gov/html/tlc/downloads/pdf/2014_taxicab_fact_book.pdf
https://www.openstreetmap.org
https://www.openstreetmap.org
https://en.wikipedia.org/wiki/World_Geodetic_System
https://en.wikipedia.org/wiki/PostgreSQL
https://en.wikipedia.org/wiki/PostgreSQL

	Introduction
	Related Work
	System Architecture
	Driver
	Rider
	Ride-hailing Service Provider
	Wi-Fi AP Network Operator

	Adversarial Model
	Our Solution
	Overview
	Location Proofs
	Tight Bounds
	Lower-bound Computation

	Visualization Tools
	Performance Evaluation
	Datasets
	Wi-Fi access points
	Drivers traces
	Street map network

	Methodology
	Results
	Poorly performing scenarios

	Challenges
	Conclusion and Future Work
	References

