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Motivation

● Ride-hailing services are popular
e.g., Uber is operating in more than 500 cities in the world 

● Service providers rely on location information 
reported by the drivers’ smartphones to compute the 
fares
a dishonest driver might try to manipulate the GPS 
information to over-charge the riders

● It is important to have a mechanism to guarantee the 
integrity of the fares of the trips
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Goal

Provide stronger integrity guarantees for the distance of the 
trip without relying on the smartphone of the driver

Approach

● Provide lower-bound and upper-bound distance for a trip, 
given its source, destination and duration.

● We rely on:
○ Access Point-based Location Proofs
○ Street-map networks
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Actors & threat model

● Drivers. Assumed malicious: can spoof their locations to increase the 
computed fare.

● Riders. Assumed malicious: can attack the driver’s smartphone to 
send wrong location updates so reduce the computed fare.

● Service providers. Assumed honest: it is in their interest to avoid 
overcharging riders, they would opt for other service providers.

● Access point operators. Assumed honest: APs are assumed to 
follow the protocol specified in our solution. In particular, they are 
assumed not to collude with drivers.
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Lower bound distance



Driver periodically sends GPS 
coordinates to the SP.
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Current scenario (1)



Current scenario (2)

Driver periodically sends GPS 
coordinates to the SP.
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Overview of our solution (1)

Driver collects Location Proofs 
from unit-disc Access Points.

- A location proof is a piece of 
data that certifies a 
geographical location [4]

SP defines location proof areas.

SP computes the lower bound of 
the distance by summing up the 
shortest paths between any two 
consecutive location proof areas.
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Overview of our solution (2)

Driver collects Location Proofs 
from unit-disc Access Points.

- A location proof is a piece of 
data that certifies a 
geographical location [4]

SP defines location proof areas.

SP computes the lower bound of 
the distance by summing up the 
shortest paths between any two 
consecutive location proof areas.
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Overview of our solution (3)

Driver collects Location Proofs 
from unit-disc Access Points.

- A location proof is a piece of 
data that certifies a 
geographical location [4]

SP defines location proof areas.

SP computes the lower bound of 
the distance by summing up the 
shortest paths between any two 
consecutive location proof areas.
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Achieving tighter bounds (1)

Street-map networks:

● Nodes (at least) at street 
intersections

● Additional information for 
each street (e.g., if one-way 
only, maximum speed)

SP uses street maps to compute 
the distance between LPs.

Add nodes every 0.5 seconds.

Add nodes at intersections of LPs 
and streets.
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LP2

Achieving tighter bounds (2)

Street-map networks:

● Nodes (at least) at street 
intersections

● Additional information for 
each street (e.g., if one-way 
only, maximum speed)

SP uses street maps to compute 
the distance between LPs.

Add nodes every 0.5 seconds.

Add nodes at intersections of LPs 
and streets.
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Achieving tighter bounds (3)

Street-map networks:

● Nodes (at least) at street 
intersections

● Additional information for 
each street (e.g., if one-way 
only, maximum speed)

SP uses street maps to compute 
the distance between LPs.

Add nodes every 0.5 seconds.

Add nodes at intersections of LPs 
and streets.
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Achieving tighter bounds (4)

Street-map networks:

● Nodes (at least) at street 
intersections

● Additional information for 
each street (e.g., if one-way 
only, maximum speed)

SP uses street maps to compute 
the distance between LPs.

Add nodes every 0.5 seconds.

Add nodes at intersections of LPs 
and streets.
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Achieving tighter bounds (5)

Street-map networks:

● Nodes (at least) at street 
intersections

● Additional information for 
each street (e.g., if one-way 
only, maximum speed)

SP uses street maps to compute 
the distance between LPs.

Add nodes every 0.5 seconds.

Add nodes at intersections of LPs 
and streets.
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Lower bound computation (1)

SP builds a basic graph from the 
dense street-map network.

Given GPS updates and LPs of a 
trace, SP defines LP areas.

SP adds nodes to the graph 
corresponding to intersections 
between streets and LP areas.

SP defines LP nodes as the nodes 
inside each LP area.

SP computes the lower bound of the 
distance by summing up the shortest 
paths between any two consecutive 
sets of LP nodes.
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Lower bound computation (2)

SP builds a basic graph from the 
dense street-map network.

Given GPS updates and LPs of a 
trace, SP defines LP areas.

SP adds nodes to the graph 
corresponding to intersections 
between streets and LP areas.

SP defines LP nodes as the nodes 
inside each LP area.

SP computes the lower bound of the 
distance by summing up the shortest 
paths between any two consecutive 
sets of LP nodes.
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Lower bound computation (3)

SP builds a basic graph from the 
dense street-map network.

Given GPS updates and LPs of a 
trace, SP defines LP areas.

SP adds nodes to the graph 
corresponding to intersections 
between streets and LP areas.

SP defines LP nodes as the nodes 
inside each LP area.

SP computes the lower bound of the 
distance by summing up the shortest 
paths between any two consecutive 
sets of LP nodes.
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Lower bound computation (4)

SP builds a basic graph from the 
dense street-map network.

Given GPS updates and LPs of a 
trace, SP defines LP areas.

SP adds nodes to the graph 
corresponding to intersections 
between streets and LP areas.

SP defines LP nodes as the nodes 
inside each LP area.

SP computes the lower bound of the 
distance by summing up the shortest 
paths between any two consecutive 
sets of LP nodes.
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Lower bound computation (5)

SP builds a basic graph from the 
dense street-map network.

Given GPS updates and LPs of a 
trace, SP defines LP areas.

SP adds nodes to the graph 
corresponding to intersections 
between streets and LP areas.

SP defines LP nodes as the nodes 
inside each LP area.

SP computes the lower bound of the 
distance by summing up the shortest 
paths between any two consecutive 
sets of LP nodes.
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Visualization tools

              Based on folium
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Datasets

● Mobility traces of 316 taxi cabs in Rome, Italy: 
GPS coordinates collected in February 20141

● 9,883,501 FON Wi-Fi APs2

● OSM data2: 
○ 150,493 roads
○ 1,400,348 nodes

1 Available at: crawdad.org/roma/taxi/20140717/
2 Collected by L. Magarshack
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Filtered datasets (1)

We consider the following region as Rome:
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Filtered datasets (2)

Given this region, we filter out data not lying inside it.

The filtered datasets consist of:

● 44,243 FON Wi-Fi APs

● 811,306 OSM nodes
793, 433 in the giant component (disconnected graph)
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Filtered datasets (3)

We split GPS updates according to the following distribution, 
derived from the distribution of average trip distances by 
yellow taxis in NYC in 2014.

We obtain 176,603 traces.
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● 20 Jupyter notebooks (code in Python)

● 10 Python scripts

● 2 libraries in Python [1700 LOC]

● Easily extendible for the upper bound computation

● Most challenging part: 
adding new nodes at LP areas’ intersections

Methodology
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● 1,000 random traces

● 55.21% median accuracy

● less than 10 APs/km in 
most of the traces 

● 9 min/trace
- CPU: Intel Xeon X5650 @ 2.67GHz

- Memory:  88 GB

Results
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A bad case
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Conclusion & future work

Conclusion: 

● Infrastructure-based solution
● Visualization tools
● Easily extendible for the upper bound computation

Future steps:

● Maximize lower bound by computing the longest path in a 
DAG

● Evaluate our solution on a dataset of traces corresponding 
to real rides.

● Compute the upper bound of the traveled distance
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