
Lower bound computation for
SecureRide

A cheat-proof ride-hailing service

Privacy Protection

Tutors: Anh Pham, Italo Dacosta January 27, 2017

Emanuele Bugliarello
emanuele.bugliarello@epfl.ch

(SC-MA3)

Motivation

● Ride-hailing services are popular
e.g., Uber is operating in more than 500 cities in the world

● Service providers rely on location information
reported by the drivers’ smartphones to compute the
fares
a dishonest driver might try to manipulate the GPS
information to over-charge the riders

● It is important to have a mechanism to guarantee the
integrity of the fares of the trips

2

Goal

Provide stronger integrity guarantees for the distance of the
trip without relying on the smartphone of the driver

Approach

● Provide lower-bound and upper-bound distance for a trip,
given its source, destination and duration.

● We rely on:
○ Access Point-based Location Proofs
○ Street-map networks

3

Related work

1. A. Pham, K. Huguenin, I. Bilogrevic, I. Dacosta, and J.-P. Hubaux.
SecureRun: Cheat-Proof and Private Summaries for Location-Based Activities.
Transactions on Mobile Computing, 2015.

2. A. Pham, I. Dacosta, B. Jacot-Guillarmod, K. Huguenin, T. Hajar, F. Tramèr, V. Gligor,
and J.-P. Hubaux
PrivateRide: A Privacy-Enhanced Ride-Hailing Service
Proceedings on Privacy Enhancing Technologies

3. L. Magarshack.
SecureRide: A cheat-proof ride-hailing service.
Master thesis, 2016.

4. J. Balasch, A. Rial, C. Troncoso and C. Geuens.
PrETP: Privacy-Preserving Electronic Toll Pricing.
USENIX Security, 2010.

5. S. Saroiu and A. Wolman.
Enabling new mobile applications with location proofs.
ACM HotMobile, 2009. 4

Actors & threat model

● Drivers. Assumed malicious: can spoof their locations to increase the
computed fare.

● Riders. Assumed malicious: can attack the driver’s smartphone to
send wrong location updates so reduce the computed fare.

● Service providers. Assumed honest: it is in their interest to avoid
overcharging riders, they would opt for other service providers.

● Access point operators. Assumed honest: APs are assumed to
follow the protocol specified in our solution. In particular, they are
assumed not to collude with drivers.

5

Lower bound distance

Driver periodically sends GPS
coordinates to the SP.

7

Current scenario (1)

Current scenario (2)

Driver periodically sends GPS
coordinates to the SP.

8

Overview of our solution (1)

Driver collects Location Proofs
from unit-disc Access Points.

- A location proof is a piece of
data that certifies a
geographical location [4]

SP defines location proof areas.

SP computes the lower bound of
the distance by summing up the
shortest paths between any two
consecutive location proof areas.

9

Overview of our solution (2)

Driver collects Location Proofs
from unit-disc Access Points.

- A location proof is a piece of
data that certifies a
geographical location [4]

SP defines location proof areas.

SP computes the lower bound of
the distance by summing up the
shortest paths between any two
consecutive location proof areas.

10
LP1

LP2

LP3

Overview of our solution (3)

Driver collects Location Proofs
from unit-disc Access Points.

- A location proof is a piece of
data that certifies a
geographical location [4]

SP defines location proof areas.

SP computes the lower bound of
the distance by summing up the
shortest paths between any two
consecutive location proof areas.

11
LP1

LP2

LP3

+

Achieving tighter bounds (1)

Street-map networks:

● Nodes (at least) at street
intersections

● Additional information for
each street (e.g., if one-way
only, maximum speed)

SP uses street maps to compute
the distance between LPs.

Add nodes every 0.5 seconds.

Add nodes at intersections of LPs
and streets.

12

LP2

Achieving tighter bounds (2)

Street-map networks:

● Nodes (at least) at street
intersections

● Additional information for
each street (e.g., if one-way
only, maximum speed)

SP uses street maps to compute
the distance between LPs.

Add nodes every 0.5 seconds.

Add nodes at intersections of LPs
and streets.

13
LP1

LP3

Achieving tighter bounds (3)

Street-map networks:

● Nodes (at least) at street
intersections

● Additional information for
each street (e.g., if one-way
only, maximum speed)

SP uses street maps to compute
the distance between LPs.

Add nodes every 0.5 seconds.

Add nodes at intersections of LPs
and streets.

14

Achieving tighter bounds (4)

Street-map networks:

● Nodes (at least) at street
intersections

● Additional information for
each street (e.g., if one-way
only, maximum speed)

SP uses street maps to compute
the distance between LPs.

Add nodes every 0.5 seconds.

Add nodes at intersections of LPs
and streets.

15

LP2

LP1

LP3

Achieving tighter bounds (5)

Street-map networks:

● Nodes (at least) at street
intersections

● Additional information for
each street (e.g., if one-way
only, maximum speed)

SP uses street maps to compute
the distance between LPs.

Add nodes every 0.5 seconds.

Add nodes at intersections of LPs
and streets.

16

LP2

LP1

LP3

Lower bound computation (1)

SP builds a basic graph from the
dense street-map network.

Given GPS updates and LPs of a
trace, SP defines LP areas.

SP adds nodes to the graph
corresponding to intersections
between streets and LP areas.

SP defines LP nodes as the nodes
inside each LP area.

SP computes the lower bound of the
distance by summing up the shortest
paths between any two consecutive
sets of LP nodes.

17

Lower bound computation (2)

SP builds a basic graph from the
dense street-map network.

Given GPS updates and LPs of a
trace, SP defines LP areas.

SP adds nodes to the graph
corresponding to intersections
between streets and LP areas.

SP defines LP nodes as the nodes
inside each LP area.

SP computes the lower bound of the
distance by summing up the shortest
paths between any two consecutive
sets of LP nodes.

18

LP1

LP2

LP3

Lower bound computation (3)

SP builds a basic graph from the
dense street-map network.

Given GPS updates and LPs of a
trace, SP defines LP areas.

SP adds nodes to the graph
corresponding to intersections
between streets and LP areas.

SP defines LP nodes as the nodes
inside each LP area.

SP computes the lower bound of the
distance by summing up the shortest
paths between any two consecutive
sets of LP nodes.

19

LP1

LP2

LP3

Lower bound computation (4)

SP builds a basic graph from the
dense street-map network.

Given GPS updates and LPs of a
trace, SP defines LP areas.

SP adds nodes to the graph
corresponding to intersections
between streets and LP areas.

SP defines LP nodes as the nodes
inside each LP area.

SP computes the lower bound of the
distance by summing up the shortest
paths between any two consecutive
sets of LP nodes.

20

LP1

LP2

LP3

Lower bound computation (5)

SP builds a basic graph from the
dense street-map network.

Given GPS updates and LPs of a
trace, SP defines LP areas.

SP adds nodes to the graph
corresponding to intersections
between streets and LP areas.

SP defines LP nodes as the nodes
inside each LP area.

SP computes the lower bound of the
distance by summing up the shortest
paths between any two consecutive
sets of LP nodes.

21
LP1

LP2

LP3

+

Visualization tools

 Based on folium
22

 Original nodes

 Added nodes

 AP areas

 GPS updates

Datasets

● Mobility traces of 316 taxi cabs in Rome, Italy:
GPS coordinates collected in February 20141

● 9,883,501 FON Wi-Fi APs2

● OSM data2:
○ 150,493 roads
○ 1,400,348 nodes

1 Available at: crawdad.org/roma/taxi/20140717/
2 Collected by L. Magarshack

23

http://crawdad.org/roma/taxi/20140717/

Filtered datasets (1)

We consider the following region as Rome:

24

Filtered datasets (2)

Given this region, we filter out data not lying inside it.

The filtered datasets consist of:

● 44,243 FON Wi-Fi APs

● 811,306 OSM nodes
793, 433 in the giant component (disconnected graph)

25

Filtered datasets (3)

We split GPS updates according to the following distribution,
derived from the distribution of average trip distances by
yellow taxis in NYC in 2014.

We obtain 176,603 traces.

26

● 20 Jupyter notebooks (code in Python)

● 10 Python scripts

● 2 libraries in Python [1700 LOC]

● Easily extendible for the upper bound computation

● Most challenging part:
adding new nodes at LP areas’ intersections

Methodology

27

● 1,000 random traces

● 55.21% median accuracy

● less than 10 APs/km in
most of the traces

● 9 min/trace
- CPU: Intel Xeon X5650 @ 2.67GHz

- Memory: 88 GB

Results

28

A bad case

29

Conclusion & future work

Conclusion:

● Infrastructure-based solution
● Visualization tools
● Easily extendible for the upper bound computation

Future steps:

● Maximize lower bound by computing the longest path in a
DAG

● Evaluate our solution on a dataset of traces corresponding
to real rides.

● Compute the upper bound of the traveled distance
30

Conclusion & future work

Conclusion:

● Infrastructure-based solution
● Visualization tools
● Easily extendible for the upper bound computation

Future steps:

● Maximize lower bound by computing the longest path in a
DAG

● Evaluate our solution on a dataset of traces corresponding
to real rides.

● Compute the upper bound of the traveled distance
31

Thank you

