StoryBench: A Multifaceted Benchmark for Continuous Story Visualization
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We collect datasets that describe videos with a sequence of captions, one for each action, forming the story of the video; and their corresponding timestamps
We also (i) annotate each video segment with 34 labels; (i) show the benefits of training on story-like data; (iii) establish human evaluation of video stories; and (iv) reaffirm the need for better automatic metrics for video generation
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