
Twitter Sentiment Classification
[Memory Error] Concetto Emanuele Bugliarello, Manik Garg and Zander Harteveld

Pattern Classification and Machine Learning (CS-433), Second Project, Fall Semester 2016, EPFL, Switzerland
{emanuele.bugliarello, garg.manik, zander.harteveld}@epfl.ch

Abstract—Social media platforms such as Twitter are a rich source
of text examples expressing positive and negative sentiment. In this
paper, we investigate the classification accuracy achieved by different
learning algorithms in determining sentiments associated to tweets.
Through data pre-processing and hyperparameter tuning, we report
our computationally light TF-IDF Logistic Regression model, scoring
87.00 % accuracy in the EPFL ML Text classification challenge on
Kaggle. .

I. INTRODUCTION

Sentiment analysis is an interesting problem aiming to give
a machine the ability to understand the emotions and opinions
expressed by humans. This is an extremely challenging task due to
the complexity of human language, which makes use of rhetorical
devices such as sarcasm or irony.
Twitter is a popular “micro-blogging” social networking website
for conveying opinions and thoughts, and thus a successful
sentiment classification model based on Twitter data could pro-
vide interesting trends regarding prominent topics in the news
or popular culture. For example, one could gauge the popular
opinion of a politician by calculating the sentiment of all tweets
containing the politician’s name. Sentiment analysis in Twitter
is a significantly different paradigm than past attempts at senti-
ment analysis through machine learning since its users are only
allowed to post short status updates of less than 140 characters
(“tweets”). Moreover, as in most online social networks, users
create their own words and spelling shortcuts, that, in addition to
misspellings, slang, and abbreviations, make this task even more
challenging.
The aim of this project is to build an accurate sentiment analyzer
for tweets. That is, given a user-generated status update, our
classification model determines whether the given tweet reflects
a positive or negative opinion on the users behalf.
In this report, we will discuss about the methods for building
such sentiment analyzer including data pre-processing, creation
of word vector representations and hyperparameter optimization
for different classifiers.

II. DATA

The dataset we use to train and test our classifiers is the
one provided for the EPFL Machine Learning text classification
challenge on Kaggle[1]. The dataset consists of two small sets
of training tweets for each of the two classes1 (100,000 tweets
each), two complete sets of training tweets for each of the two
classes (1.25M tweets per class) and a test set (10,000 tweets).

III. METHODOLOGY

In the following sections, we analyze different classifiers:
Logistic Regression (LogReg), multinomial Naive Bayes (MNB)
and Support Vector Machine (SVM) with the linear kernel. To
evaluate the performances of these classifiers, we run experiments

1Positive/negative sentiment associated to the tweet.

on the provided small sets of labeled tweets, splitting them in train
(80%) and test (20%) sets. The learning is then performed using
a 3-fold cross validation (CV), such that, in each fold, 2 partitions
are used for training and 1 partition for validation. Testing is then
done on the completely held-out set. Standard deviations (std) of
the training set are reported from validation accuracies around 3-
fold CV. On the other hand, std on testing set are reported from
the accuracy on test set and mean validation accuracy from the
3-fold CV. The only metric used to assess the performances of
the classifiers, in accordance with the competition’s objective, is
their accuracy in predicting correct labels.

A. Feature generation

To build an accurate text classifier, it is crucial to find a good
feature representation of the input text. Out of the numerous
text feature engineering methods, we discuss two of them in this
following section.

• GloVe (Stanford University). The basic idea behind Global
Vectors for Word Representation (GloVe) [2] is that ratios
of word-word co-occurrence probabilities can encode some
form of meaning. Thus, one can measure the relatedness of
two words by computing the Euclidean distance (or cosine
similarity) between two word vectors.

• TF-IDF. Term Frequency - Inverse Document Frequency
(TF-IDF) is a common numerical statistic that is intended
to reflect the importance of a word to a document in a
corpus. It consists of two terms. First, the term frequency
(TF) measures how frequent a specific term appears in a
document. The second term, inverse document frequency
(IDF), is computed as the logarithm of the number of
documents in the corpus divided by the number of documents
where the specific term appears. It weights down terms
occurring very frequently in the corpus and increases the
weight of terms that occur rarely; thus giving a measure of
how important a term is.

B. Pre-processing

We now present various pre-processing steps suitable for this
text classification task. The dataset provided for the competition
has already been pre-processed by (i) replacing user references
with a generic token (@XYZ → <user>), (ii) replacing URLs
with a generic token (<url>), (iii) lowering the text and (iv)
adding whitespace around punctuation.
Through our error analysis and intuition, we notice several tweet
characteristics that could potentially be useful as pre-processing
for a TF-IDF feature representation. The following shows a list
of pre-processing steps we have extensively been investigating:

• Remove numbers. Usually, numbers do not convey any
emotions and could thus be stripped away. This is not
always true: dates such as 09/11/2001 can clearly identify
the polarity of a tweet.

• Stemming. Stemming is reducing words back to their root
word. This might be useful as those words usually have a
very similar meaning and can be grouped together.

• Lemmatization. Lemmatization is determining the lemma
of a word based on its intended meaning with the use of a
vocabulary and morphological analysis of words. This results
in removing inflectional endings only and to return the base
or dictionary form of a word.

• N-grams. N-grams can help detecting the correct meaning
of a sentence by including combination of multiple words as
tokens. N specifies the number of words in each combination.

• Remove stop words. Usually, stop words are extremely
common words which would appear to be of little value in
helping select documents matching a user need (sentiment
classification in our case).

• Remove <user> and <url>. Any group of words can
actually be chosen as the stop words for a given purpose.
Thus, due to their high frequency, <user> and <url> can
be considered as stopwords and so could be removed from
the text.

• Remove the pound sign. A hashtag may just consist of a
single word and thus removing the pound sign (#) at the
beginning of it would improve the TF-IDF weights.

• Group emoticons. Preserving emoticons and mapping dif-
ferent representations of the same emoticon into one (e.g., {
:-), :), (- :, (: } → { :) }) could let the classifier associate
it to a specific polarity.

• Negate verbs. Inspired by Pang and Lee’s sentiment analysis
research[3], stripping out the word “not” from tweets and
appending the characters NOT before the following token
in a tweet could identify negative feelings associated to oth-
erwise positive words. For instance, “She does not like me”
would become “She does NOT like me” and so “NOT like”
would be a new (negative) token.

• Fix common typos. Typos are very common in tweets
and thus fixing the most common ones (e.g., people forget
the apostrophe when negating an auxiliary) might correctly
identify several instances.

• Replace repeating letters. By looking at the tweets, it
is possible to see that sometimes people repeat letters to
stress the emotion (e.g., “hunggrryyy”, “huuuuuuungry” for
“hungry”). Thus, another pre-processing step is to look for
two or more repetitive letters in a word and replace them by
just two of them.

IV. RESULTS

In this section we specify the results obtained for each of the
methodologies discussed, and the analysis performed in order to
construct our final sentiment analysis model.

A. Feature generation

To select the best model for generating numerical word repre-
sentations, we compare the GloVe word embedding, with both 20
and 100 features per word, with the default instance of TF-IDF
from scikit-learn[4]. To obtain a first insight into the performances
of the models, we perform the training of the obtained word-
to-vector matrix and word-frequency-based feature matrix using
the LogReg and SVM classifiers from scikit-learn without any
hyperparameter optimization. As it is shown in Table I, the best
classification results of the raw data are obtained using TF-IDF

word vectors. We therefore proceed using TF-IDF to optimize
data pre-processing and hyperparameter optimization steps for
LogReg and SVM classifiers in order to improve their accuracy.
Moreover, the accuracy of a classifier increases with the dataset
size, as shown in Fig. 1.

Fig. 1: Effect of dataset size on accuracy as observed on test set
with default TF-IDF LogReg model.

B. Pre-processing

We now show the additional pre-processing steps, in an ag-
gregating manner, used to obtain the best classification accuracy
for each of the aforementioned classifiers. The baseline pre-
processor is referred to the received dataset (having applied the
pre-processing steps described in section III-B).

1) Dummy: The baseline classifier is a random classifier that
is evaluated on the received dataset without any pre-processing.
As expected, the accuracy of such classifier is around 50%.
Specifically, 0.5018± 0.0019 for a 3-fold CV.

2) LogReg: For each additional pre-processing step, a LogReg
classifier (with default regularization parameter C=1) is trained.
The pre-processing steps that yielded improvements on test ac-
curacy are listed in Table II. Other pre-processing steps yielded
lower test set accuracies.

train test change
base 0.8048±0.0009 0.8097±0.0024 0.00%

+repeating letters 0.8227±0.0015 0.8271±0.0015 1.74%
+stem 0.8254±0.0020 0.8303±0.0025 0.30%
+remove # 0.8258±0.0022 0.8306±0.0024 0.03%
+2-grams 0.8372±0.0013 0.8457±0.0046 1.51%

TABLE II: Best pre-processing steps for default LogReg.

The improvement observed by replacing repeating letters is
reflective of the way people express their emotions in a textual
form.

3) SVM: The preprocessing steps that yielded improvements
on test accuracy for SVM are listed in Table III.

train test change
base 0.7908±0.0016 0.7918±0.0005 0.00%

+repeating letters 0.8142±0.0011 0.8163±0.0010 2.45%
+stem 0.8142±0.0020 0.8171±0.0014 0.08%
+2-grams 0.8178±0.0018 0.8198±0.0010 0.27%

TABLE III: Best pre-processing steps for default SVM.

Embeddings Classifier Accuracy

GloVe with η = 0.001, α = 0.75, nmax = 100, epochs = 10
• 20 features LogReg 0.5965 ± 0.00197

SVM 0.6083 ± 0.00140
• 100 features LogReg 0.6159 ± 0.00069

SVM 0.6041 ± 0.00165
TF-IDF

• default LogReg 0.8097 ± 0.00243
SVM 0.7914 ± 0.00039

TABLE I: Numerical word representation models on small data set. Classifiers are from scikit-learn, with default settings.

4) MNB: The preprocessing steps that yielded improvements
on test accuracy are listed in Table IV.

train test change
base 0.7642±0.0011 0.7650±0.0004 0.00%

+replacing not 0.7664±0.0015 0.7671±0.0003 0.21%
+english stop words 0.7668±0.0009 0.7675±0.0003 0.04%
+2-grams 0.7846±0.0013 0.7903±0.0028 2.35%

TABLE IV: Best pre-processing steps for default MNB.

A pictorial representation comparing the best pre-processing
steps for each classifier is given in Fig. 2.

Fig. 2: Accuracies for each investigated classifiers (default hy-
perparameters from scikit-learn modules) including its optimal
pre-processing.

It is thus clear that replacing multiple occurrences of two
words improves the classification accuracy of LogReg and SVM.
Another determining hyperparamter is the n-grams while feature
generation.

C. Hyperparameter optimization

The CountVectorizer() and TfidfTransfromer() from scikit-learn
have multiple hyperparameters that can be tuned. A first hy-
perparameter is N-gram, already described in the Methodology
section. Other hyperparameters are max_df, a threshold to cut
off highly frequent words; and min_df, a threshold to clip off
very rare words. Moreover, the maximal amount of features,
max_features, can be set. Another hyperparameter is the
inverse L2 regularization strength (C) of the LogReg.
In order to search through the complete landscape of each

hyperparameter, we first apply a random search using scikit-
learn’s RandomSearchCV(), on a wide range of hyperparameters
to get an initial idea of the optimal parameters for the full dataset.
The returned values are reported in Table Va and give an accuracy
of 0.8686± 0.0023 on the full dataset.

(a)

hyperparameter value
max_features None
ngram_range (1, 3)
max_df ≈ 0.9261
min_df 4
C ≈ 2.1544

(b)

hyperparameter value
max_features None
ngram_range (1, 3)
max_df ≈ 0.9261
min_df 4
C 3.41

TABLE V: Hyperparameters returned by (a) coarse Random-
SearchCV() and (b) fine sampling around the optimal range.

We then perform a fine-grain search on the small dataset
to optimize the hyperparameter C for Logistic Regression. Fig.
3 illustrates the testing accuracy peak of 0.8534 ± 0.0039 at
around C = 3.41 on the small dataset that yield an accuracy
of 0.8739± 0.0017 on the full dataset after 3-fold CV. The final
hyperparameters are then the ones specified in Table Vb with
1783165 features.

To analyze the classification performance of our classification
system, we plot the receiver operating characteristic (ROC) curve
4. This is the true positive rate against the false positive rate for
the different possible cut-points. Generally, the closer the curve
to the left upper corner of the ROC space, the more accurate the
classification; and the closer the curve to the diagonal, the less
accurate the classification. Therefore, the area under the curve
(AUC) is a measure of classification accuracy. One can see that
the AUC of the mean ROC over three folds is 0.92 ± 0.0047,
showing that our classification holds an accuracy of 92%.

V. DISCUSSION

Starting with different types of embeddings, the TF-IDF em-
bedding gives the best baseline results. This is surprising as the
popular GloVe algorithm can be regarded as a state-of-the-art.
Thus, we speculate that GLoVe would have given comparable
accuracies as TF-IDF with proper data pre-processing and/or
using computationally expensive Neural Networks.
Despite the fact that the current state-of-the-art[5] makes use
of Convolutional Neural Networks, the lack of computational
power to train them is not negligible. This is why we chose
the TF-IDF: it is ease to be implemented and requires very
small computational power. The strength of our final model is
its computational simplicity compared to large Neural Networks.
Our model can be trained in a moderate time interval (50 minutes
on a laptop powered by 2.2-GHz Intel Core i7 processor and 16

Fig. 3: Landscape of the hyperparameter C of Logistic Regression
classifier on features obtained from optimized TF-IDF.

Fig. 4: ROC curve ilustrating the LogReg classifier performances
over 3-CV fold.

GB of RAM) while still producing impressive predictions. This
is achieved by optimizing the model on different levels from the
data pre-processing up to the classifier. We have reported only
the pre-processing steps that actually increase the accuracy alone,
ensuring a better prediction. The features were engineered using
several tricks such as N-grams for better capturing the meaning
of a tweet. All hyperparamters have been tweaked extensively
using a first round a coarse-grained global ”random” search, and
in a second round a very fine tuning on a small set of possible
parameters around the best result from the first round. Finally, we
have 1,783,165 features that lead to a highly optimized Twitter
sentiment analyzer with an accuracy of 0.8739 ± 0.0017 on 3-
fold CV on the full dataset using Logistic Regression. Here each
feature represent a token in the vocabulary with one or more
words.
Naturally, there exits further possibility to improve our sentiment
analyzer. Considering the free available modules from the Natural
Language Toolkit (NLTK)[6] for text pre-processing and classi-
fication, one can think of introducing extra levels of information
such as the Part-Of-Speech tagging or Named-entity recognition.
Moreover, it would be interesting to see the pre-processing steps
applied to tweets that are then fed into a powerful method, such
as CNNs.

VI. CONCLUSION

In this report, we described and compared several sentiment
classifiers optimized towards predicting the sentiment polarity of
tweets. Our approach is based on simple classification scheme
in contrast to highly complex Neural Networks and therefore
computationally quite cheap. Though it relies on a large amount
of training data. After pre-processing, feature engineering and
classifier optimization we were able to build a sentiment ana-
lyzer trained in a moderate time window while holding a good
performance in terms of accuracy.

REFERENCES

[1] EPFL. (2016) Epfl ml text classification. [Online]. Available: https:
//inclass.kaggle.com/c/epfml-text/

[2] J. Pennington, R. Socher, and C. D. Manning, “Glove: Global vectors
for word representation,” in Empirical Methods in Natural Language
Processing (EMNLP), 2014, pp. 1532–1543. [Online]. Available: http:
//www.aclweb.org/anthology/D14-1162

[3] L. L. B. Pang and S. Vaithyanathan, “Thumbs up? sentiment classification
using machine learning techniques,” in Empirical Methods in Natural
Language Processing (EMNLP), 2002, pp. 79–86. [Online]. Available:
http://www.cs.cornell.edu/home/llee/papers/sentiment.pdf

[4] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay, “Scikit-learn:
Machine learning in Python,” Journal of Machine Learning Research, vol. 12,
pp. 2825–2830, 2011.

[5] J. Deriu, M. Gonzenbach, F. Uzdilli, A. Lucchi, V. De Luca, and M. Jaggi,
“Swisscheese at semeval-2016 task 4: Sentiment classification using an
ensemble of convolutional neural networks with distant supervision,” Pro-
ceedings of SemEval, pp. 1124–1128, 2016.

[6] E. Loper and S. Bird, “Nltk: The natural language toolkit,” in Proceedings
of the ACL-02 Workshop on Effective Tools and Methodologies for
Teaching Natural Language Processing and Computational Linguistics
- Volume 1, ser. ETMTNLP ’02. Stroudsburg, PA, USA: Association
for Computational Linguistics, 2002, pp. 63–70. [Online]. Available:
http://dx.doi.org/10.3115/1118108.1118117

https://inclass.kaggle.com/c/epfml-text/
https://inclass.kaggle.com/c/epfml-text/
http://www.aclweb.org/anthology/D14-1162
http://www.aclweb.org/anthology/D14-1162
http://www.cs.cornell.edu/home/llee/papers/sentiment.pdf
http://dx.doi.org/10.3115/1118108.1118117

	Introduction
	Data
	Methodology
	Feature generation
	Pre-processing

	Results
	Feature generation
	Pre-processing
	Dummy
	LogReg
	SVM
	MNB

	Hyperparameter optimization

	Discussion
	Conclusion
	References

