Matrix Completion in the Unit Hypercube via Structured Matrix Factorization
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Motivation Problem Formulation

In this study, we address a key challenge . * We consider a general framework where Department Tasks Claims
faced by several organizations: how t(.) .select ‘Jﬁn " J‘ . employees work in different departments T \ J;tjoeb%%ggsf
assets among available ones. Specitically, A, — B * Employees’ partial results (called claims) Job ——) sk zsesst useridi 22741
given a job A consisting of two tasks, which ¢ - y 4 —~ 4 are assessed by the department manager, _\ PR spproved: 1. -
employee should be assigned to each task? LS A Y who decides whether to approve them Eaj{k:':ét%E%;B ff%ﬁiﬁﬁﬂd;;,
- — - - taskla: 258651
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Our key contributions are: » Employees’ efficiencies can be measured approved: 1.0
1. Transforming industrial setups into a Experiments on three real-world datasets as the ratio of accepted claims: —
real-valued matrix with entries in |0,1| validate the effectiveness of our models. Z’,V_d{l ag%
representing employees’ efficiencies Xdan = l;v € [0,1]
dn ) ]
2. Proposing two novel structured matrix where t
factorization (MF) models to solve the - Ngn: 77claims by employee d in dept n
resulting matrix completion problem - ag% . ~-th claim of employee d in dept n  Our goal becomes to predict the missing
was accepted (1) or rejected (0) entries of the efficiency matrix X.
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X C x| S5 Wy Wy Wy o W @z, >0 * Survival Matrixz Factorization (SMF) i e
_ " l Z is a probabilistic model for the process
- 0.1 Z,s Sz =1 resulting in the efficiency values R $
di 1 _________________ d .
| 2 * We assume each claim acceptance to . -~ e |
. be a Bernoulli random variable A, ,; o K ﬂ
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» Eapertise matriz factorization (EMF) is a low-rank model X = W - ZT introducing equal to 1 when Qg > ¥y: {;QIK o
structure on W and Z so that the entries of W - ZT lie in [0, 1] - Q4y: Quality of claims submitted by ;
| , , , employee d to department n
« We assume latent factors represent the skills required to work in a given dept p. Y b
) — — - Vs Quality threshold of the manager of department n
- Ranging from 0 (no ability) to 1 (proficiency) for each employee
- Being the distribution of skills required to complete tasks in each department  That is:
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« That is, the efficiency of employee d in dept n is approximated by a weighted Xan = PlQan > Vnl = Sg,,,(Vn) = f fog,, (W) du,
sum of the employee’s skills and the importance of each skill in that department Yn
where S (¥5) is the survival function of Qg at y,
* The resulting optimization problem is:
1 2, A, * Assuming (i) employees’ quality probability distributions to be normal and (ii)
W>Or?i{)lﬂ>0 2100 z [X4n — (Ba + W5 - 2,)]* + > (W IE+I B 1I15) + > WAF their means to be low-rank ug, =~ wk - z,, we solve the usual MF problem with:
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subject to +w Slandz Zo = 1, for (d, k) € [D|X|K|,n € [N Xdn = eXp | — u
J Ba dk Tk (d, k) € [D]x[K] [N] n . 2mo? 2 52

Experimental Results

We evaluate the performance of our models in terms of Precision@N and Recall@N, for N € {2, 3, 5, 10}. We compare our models against popular MF techniques, including
Nonnegative matrix factorization (NMF), Bounded matrix factorization (BMF), Probabilistic matrix factorization (PMF) and Logistic matrix factorization (LMF).

 (Goal: Recommend artists to departments according
to their efficiencies in rendering visual effects
* Data matrix X:

* (Goal: Recommend apps to users in an Over-The-Top Goal: Recommend website categories to an ad agency
service according to their watching rates in order to maximize their click-through rate
 Data matrix X: Data matrix X:
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