Matrix Completion in the Unit Hypercube via Structured Matrix Factorization

Emanuele Bugliarello¹, Swayambhoo Jain² and Vineeth Rakesh²

IJCAI 2019

¹Tokyo Institute of Technology
²Technicolor AI Lab
Motivation
Motivation

• Challenge: For a given job, how to select assets among available ones?
Motivation

• Challenge: For a given job, how to select assets among available ones?

Job A
• Task 1
• Task 2
Motivation

- Challenge: For a given job, how to select assets among available ones?
Motivation

• Challenge: For a given job, how to select assets among available ones?

• Approach: Predict the efficiency of employees in each task!
Key Contributions

Bugliarello et al. (IJCAI 2019)
Key Contributions

• Transform industrial setups into a sparse real-valued matrix with entries lying in the $[0, 1]$ interval (e.g., efficiencies of employees)
Key Contributions

• Transform industrial setups into a sparse real-valued matrix with entries lying in the $[0, 1]$ interval (e.g., efficiencies of employees)

• Propose 2 novel structured matrix factorization models that leverage our knowledge of the environment
 • expertise matrix factorization (EMF): exploits the $[0, 1]$ boundary constraint
 • survival matrix factorization (SMF): probabilistic model of employee efficiency
Key Contributions

• Transform industrial setups into a sparse real-valued matrix with entries lying in the $[0, 1]$ interval (e.g., efficiencies of employees)

• Propose 2 novel structured matrix factorization models that leverage our knowledge of the environment
 • expertise matrix factorization (EMF): exploits the $[0, 1]$ boundary constraint
 • survival matrix factorization (SMF): probabilistic model of employee efficiency

• Validate the effectiveness of our models on 3 real-world datasets with values bounded in the $[0, 1]$ interval
Problem Formulation (1/2)
Problem Formulation (1/2)

- Work allocation framework (based on Technicolor’s, but very general)
Problem Formulation (1/2)

- Work allocation framework (based on Technicolor’s, but very general)
Problem Formulation (1/2)

- Work allocation framework (based on Technicolor’s, but very general)

- A job for the organization requires contributions from different *departments*
Problem Formulation (1/2)

• Work allocation framework (based on Technicolor’s, but very general)

A job for the organization requires contributions from different departments

Each department is led by a manager who divides the work in their department into tasks
Problem Formulation (1/2)

• Work allocation framework (based on Technicolor’s, but very general)

- A job for the organization requires contributions from different departments
- Each department is led by a manager who divides the work in their department into tasks
- Each task is assigned to a single employee, who submits partial results called claims
Problem Formulation (1/2)

- Work allocation framework (based on Technicolor’s, but very general)

- A job for the organization requires contributions from different departments
- Each department is led by a manager who divides the work in their department into tasks
- Each task is assigned to a single employee, who submits partial results called claims
- Managers assess the quality of claims and decide to approve them or not
Problem Formulation (2/2)
Problem Formulation (2/2)

- Employee’s competency: ratio of accepted claims
 - Rejected claim \Rightarrow performance loss for the organization
Problem Formulation (2/2)

- Employee’s competency: ratio of accepted claims
 - Rejected claim ⇒ performance loss for the organization

- We define the efficiency of employee d in department n as:

$$x_{dn} = \frac{\sum_{i=1}^{N_{dn}} a_{dn}^{(i)}}{N_{dn}} \in [0,1]$$

- N_{dn}: total number of claims by employee d in department n
- $a_{dn}^{(i)}$: i-th claim by employee d in department n was accepted (1) or rejected (0)
Problem Formulation (2/2)

- Employee’s competency: ratio of accepted claims
 - Rejected claim ⇒ performance loss for the organization

- We define the efficiency of employee \(d \) in department \(n \) as:

\[
x_{dn} = \frac{\sum_{i=1}^{N_{dn}} a_{dn}^{(i)}}{N_{dn}} \in [0,1]
\]

- \(N_{dn} \): total number of claims by employee \(d \) in department \(n \)
- \(a_{dn}^{(i)} \): \(i \)-th claim by employee \(d \) in department \(n \) was accepted (1) or rejected (0)

- Goal: Predicting employee efficiency ⇒ predicting the missing entries of \(X \)
Problem Formulation (2/2)

- Employee’s competency: ratio of accepted claims
 - Rejected claim ⇒ performance loss for the organization

- We define the efficiency of employee d in department n as:
 \[
 x_{dn} = \frac{\sum_{i=1}^{N_{dn}} a_{dn}^{(i)}}{N_{dn}} \in [0,1]
 \]
 - N_{dn}: total number of claims by employee d in department n
 - $a_{dn}^{(i)}$: i-th claim by employee d in department n was accepted (1) or rejected (0)

- Goal: Predicting employee efficiency ⇒ predicting the missing entries of X
- Most employees work in a few departments ⇒ efficiency matrix X is sparse
Proposed Models: Expertise MF
Proposed Models: Expertise MF

- Model the efficiency matrix as a low-rank matrix $X \approx W \cdot Z^T$

$$x_{dn} \approx w_{d1} w_{d2} w_{d3} \cdots w_{dK} \cdot z_{n1} z_{n2} z_{n3} \cdots z_{nK}$$
Proposed Models: Expertise MF

• Model the efficiency matrix as a low-rank matrix $X \approx W \cdot Z^T$

• Latent factors: set of skills or expertise required for a department.
Proposed Models: Expertise MF

- Model the efficiency matrix as a low-rank matrix $\mathbf{X} \approx \mathbf{W} \cdot \mathbf{Z}^T$

- Latent factors: set of *skills* or *expertise* required for a department.
 - Employees’ latent factors (skills): from 0 (no ability) to 1 (proficiency)
Proposed Models: Expertise MF

- Model the efficiency matrix as a low-rank matrix $X \approx W \cdot Z^T$

- Latent factors: set of *skills* or *expertise* required for a department.
 - Employees’ latent factors (skills): from 0 (no ability) to 1 (proficiency)
 - Departments’ latent factors: non-negative and sum to 1
 - each department has a distribution of skills required to complete tasks in it
Proposed Models: Survival MF
Proposed Models: Survival MF

- Probabilistic approach
Proposed Models: Survival MF

• Probabilistic approach
 • Each claim acceptance is an i.i.d. Bernoulli variable A_{dn}
Proposed Models: Survival MF

• Probabilistic approach
 • Each claim acceptance is an i.i.d. Bernoulli variable A_{dn}

$$x_{dn} = \frac{\sum_{i=1}^{N_{dn}} a_{dn}^{(i)}}{N_{dn}} \approx \mathbb{E} [A_{dn}] = \mathbb{P} [A_{dn} = 1]$$
Proposed Models: Survival MF

• Probabilistic approach
 • Each claim acceptance is an i.i.d. Bernoulli variable A_{dn}
 • Each submitted claim has a random quality Q_{dn}

$$x_{dn} = \frac{\sum_{i=1}^{N_{dn}} a_{dn}^{(i)}}{N_{dn}} \approx \mathbb{E} [A_{dn}] = \mathbb{P} [A_{dn} = 1]$$
Proposed Models: Survival MF

• Probabilistic approach
 • Each claim acceptance is an i.i.d. Bernoulli variable A_{dn}
 • Each submitted claim has a random quality Q_{dn}
 • The manager of department n has quality threshold γ_n

$$x_{dn} = \frac{\sum_{i=1}^{N_{dn}} a_{dn}^{(i)}}{N_{dn}} \approx \mathbb{E} [A_{dn}] = \mathbb{P} [A_{dn} = 1]$$
Proposed Models: Survival MF

• Probabilistic approach
 • Each claim acceptance is an i.i.d. Bernoulli variable A_{dn}
 • Each submitted claim has a random quality Q_{dn}
 • The manager of department n has quality threshold γ_n

$$x_{dn} = \frac{\sum_{i=1}^{N_{dn}} a_{dn}^{(i)}}{N_{dn}} \approx \mathbb{E} [A_{dn}] = \mathbb{P} [A_{dn} = 1]$$
Proposed Models: Survival MF

• Probabilistic approach
 • Each claim acceptance is an i.i.d. Bernoulli variable A_{dn}
 • Each submitted claim has a random quality Q_{dn}
 • The manager of department n has quality threshold γ_n

\[
x_{dn} = \frac{\sum_{i=1}^{N_{dn}} a_{dn}^{(i)}}{N_{dn}} \approx \mathbb{E} [A_{dn}] = \mathbb{P} [A_{dn} = 1] = \mathbb{P} [Q_{dn} > \gamma_n] = S_{Q_{dn}} (\gamma_n) = \int_{\gamma_n}^{+\infty} f_{Q_{dn}} (u) \, du
\]

• $S_{Q_{dn}} (\gamma_n)$ is the survival function of Q_{dn} at γ_n
Proposed Models: Survival MF

- Probabilistic approach
 - Each claim acceptance is an i.i.d. Bernoulli variable A_{dn}
 - Each submitted claim has a random quality Q_{dn}
 - The manager of department n has quality threshold γ_n

 $$x_{dn} = \frac{\sum_{i=1}^{N_{dn}} a_{dn}^{(i)}}{N_{dn}} \approx \mathbb{E} [A_{dn}] = \mathbb{P} [A_{dn} = 1] = \mathbb{P} [Q_{dn} > \gamma_n] = S_{Q_{dn}} (\gamma_n) = \int_{\gamma_n}^{+\infty} f_{Q_{dn}} (u) \, du$$

 - $S_{Q_{dn}} (\gamma_n)$ is the survival function of Q_{dn} at γ_n
 - Assume: Gaussian quality distribution $f_{Q_{dn}}$ with variance σ^2 and mean $\mu_{dn} \approx w_d^T \cdot z_n$

 $$x_{dn} \approx \int_{\gamma_n}^{+\infty} \frac{1}{\sqrt{2\pi\sigma^2}} \exp \left[- \frac{(u - w_d^T \cdot z_n)^2}{2\sigma^2} \right] \, du$$
Experiments: Methodology

• Datasets
 • Movie Production [In-house]
 • Over-The-Top [In-house]
 • Click-Through Rate [Public – Outbrain Click Prediction competition]

• Evaluation metrics
 • Precision@N
 • Recall@N

• Baselines
 • MF: Matrix Factorization
 • NMF: Nonnegative Matrix Factorization
 • BMF: Bounded Matrix Factorization [Kannan et al., 2014]
 • PMF: Probabilistic Matrix Factorization [Mnih and Salakhutdinov, 2008]
 • LMF: Logistic Matrix Factorization [Johnson, 2014]
Experiments: Movie Production Data

- Recommend employees to departments according to their efficiencies
- $\mathbf{X} : 312 \times 25 - 86.85\%$ sparse – very few ratings per user
Experiments: Over-The-Top Data

- Recommend apps to users according to their watching rates
- \(\mathbf{X} : 934 \times 140 - 99.91\% \) sparse
Experiments: Click-Through Rate Data

- Recommend website categories to ad placer to maximize click-through rate
- $\mathbf{X} : 15647 \times 85 \approx 79.99\%$ sparse
Experiments: Discussion
Experiments: Discussion

• EMF outperforms every method in the Movie Production dataset (> 3×)
 • The hypotheses of EMF match the Movie Production framework, not the others
 • EMF outperforms PMF in a dataset where users have very few ratings (max 7)
Experiments: Discussion

- EMF outperforms every method in the Movie Production dataset (> 3×)
 - The hypotheses of EMF match the Movie Production framework, not the others
 - EMF outperforms PMF in a dataset where users have very few ratings (max 7)

- SMF is a general model, outperforming every method in the other datasets
 - SMF underperforms in the Movie Production dataset due to very few available entries rather than due to sparsity (Over-The-Top data is much sparser)
Conclusion

- EMF and SMF: Two novel structured MF techniques for entries in [0, 1]
 - They give better recommendations than popular MF techniques
 - It is beneficial to explicitly model entries in [0, 1]

- SMF is the simplest in a class of probabilistic models
 - Here, we assumed
 - Normally-distributed quality of work
 - Managers modeled by a single threshold

Poster #663
Experimental Results: https://github.com/e-bug/unit-mf
Conclusion

• EMF and SMF: Two novel structured MF techniques for entries in [0, 1]
 • They give better recommendations than popular MF techniques
 • It is beneficial to explicitly model entries in [0, 1]

• SMF is the simplest in a class of probabilistic models
 • Here, we assumed
 • Normally-distributed quality of work
 • Managers modeled by a single threshold

Experimental Results: https://github.com/e-bug/unit-mf