Matrix Completion in the Unit Hypercube via Structured Matrix Factorization

<u>Emanuele Bugliarello</u>¹, Swayambhoo Jain² and Vineeth Rakesh²

IJCAI 2019

Tokyo Institute of Technology

• Challenge: For a given job, how to select assets among available ones?

• Challenge: For a given job, how to select assets among available ones?

• Challenge: For a given job, how to select assets among available ones?

• Challenge: For a given job, how to select assets among available ones?

• Approach: Predict the efficiency of employees in each task!

Bugliarello et al. (IJCAI 2019) Matrix Completion in the Unit Hypercube via Structured Matrix Factorization

• Transform industrial setups into a sparse real-valued matrix with entries lying in the [0, 1] interval (e.g., efficiencies of employees)

• Transform industrial setups into a sparse real-valued matrix with entries lying in the [0, 1] interval (e.g., efficiencies of employees)

- Propose 2 novel structured matrix factorization models that leverage our knowledge of the environment
 - expertise matrix factorization (EMF): exploits the [0, 1] boundary constraint
 - survival matrix factorization (SMF): probabilistic model of employee efficiency

• Transform industrial setups into a sparse real-valued matrix with entries lying in the [0, 1] interval (e.g., efficiencies of employees)

- Propose 2 novel structured matrix factorization models that leverage our knowledge of the environment
 - expertise matrix factorization (EMF): exploits the [0, 1] boundary constraint
 - survival matrix factorization (SMF): probabilistic model of employee efficiency
- Validate the effectiveness of our models on 3 real-world datasets with values bounded in the [0, 1] interval

• Work allocation framework (based on Technicolor's, but very general)

• A job for the organization requires contributions from different departments

- A job for the organization requires contributions from different departments
- Each department is led by a *manager* who divides the work in their department into *tasks*

- A job for the organization requires contributions from different departments
- Each department is led by a *manager* who divides the work in their department into *tasks*
- Each *task* is assigned to a single *employee*, who submits partial results called *claims*

- A job for the organization requires contributions from different departments
- Each department is led by a *manager* who divides the work in their department into *tasks*
- Each *task* is assigned to a single *employee*, who submits partial results called *claims*
- Managers assess the quality of claims and decide to approve them or not

- Employee's competency: ratio of accepted claims
 - Rejected claim \Rightarrow performance loss for the organization

- Employee's competency: ratio of accepted claims
 - Rejected claim \Rightarrow performance loss for the organization
- We define the efficiency of employee d in department n as:

$$x_{dn} = \frac{\sum_{i=1}^{N_{dn}} a_{dn}^{(i)}}{N_{dn}} \in [0,1]$$

- N_{dn} : total number of claims by employee d in department n
- $a_{dn}^{(i)}$: *i*-th claim by employee *d* in department *n* was accepted (1) or rejected (0)

- Employee's competency: ratio of accepted claims
 - Rejected claim \Rightarrow performance loss for the organization
- We define the efficiency of employee d in department n as:

$$x_{dn} = \frac{\sum_{i=1}^{N_{dn}} a_{dn}^{(i)}}{N_{dn}} \in [0, 1]$$

- N_{dn} : total number of claims by employee d in department n
- $a_{dn}^{(i)}$: *i*-th claim by employee *d* in department *n* was accepted (1) or rejected (0)
- Goal: Predicting employee efficiency \Rightarrow predicting the missing entries of X

- Employee's competency: ratio of accepted claims
 - Rejected claim \Rightarrow performance loss for the organization
- We define the efficiency of employee d in department n as:

$$x_{dn} = \frac{\sum_{i=1}^{N_{dn}} a_{dn}^{(i)}}{N_{dn}} \in [0, 1]$$

- N_{dn} : total number of claims by employee d in department n
- $a_{dn}^{(i)}$: *i*-th claim by employee *d* in department *n* was accepted (1) or rejected (0)
- Goal: Predicting employee efficiency \Rightarrow predicting the missing entries of X
- Most employees work in a few departments \Rightarrow efficiency matrix X is sparse

Tasks

jobld: 64757

departmentId: 3

taskId: 258651

userId: 22741

obld: 64757 departmentld: 3

taskId: 258651

userId: 22741

Department

Job

Claims

obld: 64757

lepartmentId: 3

laimId: 1456751

askld: 258651

userId: 22741

approved: 1.0

bld: 64757

epartmentId: 3

taskld: 258651 userld: 22741 claimId: 1456752 approved: 1.0

• Model the efficiency matrix as a low-rank matrix $\mathbf{X} \approx \mathbf{W} \cdot \mathbf{Z}^T$

• Model the efficiency matrix as a low-rank matrix $\mathbf{X} \approx \mathbf{W} \cdot \mathbf{Z}^T$

• Latent factors: set of *skills* or *expertise* required for a department.

• Model the efficiency matrix as a low-rank matrix $\mathbf{X} \approx \mathbf{W} \cdot \mathbf{Z}^T$

- Latent factors: set of *skills* or *expertise* required for a department.
 - Employees' latent factors (skills): from 0 (no ability) to 1 (proficiency)

• Model the efficiency matrix as a low-rank matrix $\mathbf{X} \approx \mathbf{W} \cdot \mathbf{Z}^T$

- Latent factors: set of *skills* or *expertise* required for a department.
 - Employees' latent factors (skills): from 0 (no ability) to 1 (proficiency)
 - Departments' latent factors: non-negative and sum to 1
 - each department has a distribution of skills required to complete tasks in it

• Probabilistic approach

- Probabilistic approach
 - Each claim acceptance is an i.i.d. Bernoulli variable A_{dn}

- Probabilistic approach
 - Each claim acceptance is an i.i.d. Bernoulli variable A_{dn}

$$x_{dn} = \frac{\sum_{i=1}^{N_{dn}} a_{dn}^{(i)}}{N_{dn}} \approx \mathbb{E}\left[A_{dn}\right] = \mathbb{P}\left[A_{dn} = 1\right]$$

- Probabilistic approach
 - Each claim acceptance is an i.i.d. Bernoulli variable A_{dn}
 - Each submitted claim has a random quality Q_{dn}

$$x_{dn} = \frac{\sum_{i=1}^{N_{dn}} a_{dn}^{(i)}}{N_{dn}} \approx \mathbb{E}\left[A_{dn}\right] = \mathbb{P}\left[A_{dn} = 1\right]$$

- Probabilistic approach
 - Each claim acceptance is an i.i.d. Bernoulli variable A_{dn}
 - Each submitted claim has a random quality Q_{dn}
 - The manager of department n has quality threshold γ_n

$$x_{dn} = \frac{\sum_{i=1}^{N_{dn}} a_{dn}^{(i)}}{N_{dn}} \approx \mathbb{E}\left[A_{dn}\right] = \mathbb{P}\left[A_{dn} = 1\right]$$

- Probabilistic approach
 - Each claim acceptance is an i.i.d. Bernoulli variable A_{dn}
 - Each submitted claim has a random quality Q_{dn}
 - The manager of department n has quality threshold γ_n

$$x_{dn} = \frac{\sum_{i=1}^{N_{dn}} a_{dn}^{(i)}}{N_{dn}} \approx \mathbb{E}\left[A_{dn}\right] = \mathbb{P}\left[A_{dn} = 1\right]$$

- Probabilistic approach
 - Each claim acceptance is an i.i.d. Bernoulli variable A_{dn} ٠
 - Each submitted claim has a random quality Q_{dn} •
 - The manager of department n has quality threshold γ_n

•
$$S_{Q_{dn}}(\gamma_n)$$
 is the survival function of Q_{dn} at γ_n

- Probabilistic approach
 - Each claim acceptance is an i.i.d. Bernoulli variable A_{dn}
 - Each submitted claim has a random quality Q_{dn}
 - The manager of department n has quality threshold γ_n

abilistic approach
ach claim acceptance is an i.i.d. Bernoulli variable
$$A_{dn}$$

ach submitted claim has a random quality Q_{dn}
are manager of department n has quality threshold γ_n
 $x_{dn} = \frac{\sum_{i=1}^{N_{dn}} a_{dn}^{(i)}}{N_{dn}} \approx \mathbb{E}[A_{dn}] = \mathbb{P}[A_{dn} = 1] = \mathbb{P}[Q_{dn} > \gamma_n] = S_{Q_{dn}}(\gamma_n) = \int_{\gamma_n}^{+\infty} f_{Q_{dn}}(u) du$

- $S_{Q_{d_n}}(\gamma_n)$ is the survival function of Q_{d_n} at γ_n
- Assume: Gaussian quality distribution $f_{O_{d_n}}$ with variance σ^2 and mean $\mu_{d_n} \approx \mathbf{w}_d^T \cdot \mathbf{z}_n$

$$x_{dn} \approx \int_{\gamma_n}^{+\infty} \frac{1}{\sqrt{2\pi\sigma^2}} exp\left[-\frac{\left(u - \mathbf{w}_d^T \cdot \mathbf{z}_n\right)^2}{2\sigma^2}\right] du$$

Matrix Completion in the Unit Hypercube via Structured Matrix Factorization Bugliarello et al. (IJCAI 2019)

Experiments: Methodology

- Datasets
 - Movie Production [In-house]
 - Over-The-Top [In-house]
 - Click-Through Rate [Public Outbrain Click Prediction competition]
- Evaluation metrics
 - Precision@N
 - Recall@N
- Baselines
 - MF: Matrix Factorization
 - NMF: Nonnegative Matrix Factorization
 - BMF: Bounded Matrix Factorization [Kannan et al., 2014]
 - PMF: Probabilistic Matrix Factorization [Mnih and Salakhutdinov, 2008]
 - LMF: Logistic Matrix Factorization [Johnson, 2014]

Experiments: Movie Production Data

- Recommend employees to departments according to their efficiencies
- $X: 312 \times 25 86.85\%$ sparse very few ratings per user

Bugliarello et al. (IJCAI 2019)

Matrix Completion in the Unit Hypercube via Structured Matrix Factorization

Experiments: Over-The-Top Data

- Recommend apps to users according to their watching rates
- $\mathbf{X}: 934 \times 140 99.91\%$ sparse

Bugliarello et al. (IJCAI 2019)

Matrix Completion in the Unit Hypercube via Structured Matrix Factorization

Experiments: Click-Through Rate Data

- Recommend website categories to ad placer to maximize click-through rate
- $X : 15647 \times 85 79.99\%$ sparse

Bugliarello et al. (IJCAI 2019)

Matrix Completion in the Unit Hypercube via Structured Matrix Factorization

Experiments: Discussion

Experiments: Discussion

- EMF outperforms every method in the Movie Production dataset $(> 3 \times)$
 - The hypotheses of EMF match the Movie Production framework, not the others
 - EMF outperforms PMF in a dataset where users have very few ratings (max 7)

Experiments: Discussion

- EMF outperforms every method in the Movie Production dataset $(> 3 \times)$
 - The hypotheses of EMF match the Movie Production framework, not the others
 - EMF outperforms PMF in a dataset where users have very few ratings (max 7)
- SMF is a general model, outperforming every method in the other datasets
 - SMF underperforms in the Movie Production dataset due to very few available entries rather than due to sparsity (Over-The-Top data is much sparser)

Conclusion

- EMF and SMF: Two novel structured MF techniques for entries in [0, 1]
 - They give better recommendations than popular MF techniques
 - It is beneficial to explicitly model entries in [0, 1]
- SMF is the simplest in a class of probabilistic models
 - Here, we assumed
 - Normally-distributed quality of work
 - Managers modeled by a single threshold

Poster #663

Experimental Results: https://github.com/e-bug/unit-mf

Conclusion

- EMF and SMF: Two novel structured MF techniques for entries in [0, 1]
 - They give better recommendations than popular MF techniques
 - It is beneficial to explicitly model entries in [0, 1]
- SMF is the simplest in a class of probabilistic models
 - Here, we assumed
 - Normally-distributed quality of work
 - Managers modeled by a single threshold

Poster #663

Experimental Results: https://github.com/e-bug/unit-mf

