
Emanuele Bugliarello
University of Copenhagen
emanuele@di.ku.dk

Ryan Cotterell
ETH Zürich
University of Cambridge
rcotterell@inf.ethz.ch

Naoaki Okazaki
Tokyo Institute of Technology
okazaki@c.titech.ac.jp

Desmond Elliott
University of Copenhagen
de@di.ku.dk
TL;DW
TL;DW

- Unified theoretical and software framework for current V&L BERTs

Code, models & data online: github.com/e-bug/volta
TL;DW

• Unified theoretical and software framework for current V&L BERTs
• Controlled experiments

Code, models & data online: github.com/e-bug/volta
TL;DW

- Unified theoretical and software framework for current V&L BERTs
- Controlled experiments

Code, models & data online: github.com/e-bug/volta
TL;DW

- Unified theoretical and software framework for current V&L BERTs
- Controlled experiments

Code, models & data online: github.com/e-bug/volta
TL;DW

- Unified theoretical and software framework for current V&L BERTs
- Controlled experiments
 - Similar performance with same training data and hyperparameters

Code, models & data online: github.com/e-bug/volta
TL;DW

- Unified theoretical and software framework for current V&L BERTs
- Controlled experiments
 - Similar performance with same training data and hyperparameters
 - Embedding layer plays a crucial role

Code, models & data online: github.com/e-bug/volta
V&L Transformer Architectures
Overview

A dragon chasing a person
Overview

[CLS] A dragon chasing a person [SEP]
Overview

[CLS] A dragon chasing a person [SEP]

Language embedding
Overview

Transformer

Language embedding
Overview

Transformer

Language embedding
Overview

Transformer

Language embedding

Image embedding

[CLS] A dragon chasing a person [SEP]
Overview

Transformer

Language embedding

Image embedding

[CLS] A dragon chasing a person [SEP] [IMG] [CLS] A dragon chasing a person [SEP]
Single- & Dual-Stream Architectures
Single-Stream

Single- & Dual-Stream Architectures
Single- & Dual-Stream Architectures

Single-Stream

- Concat image–text inputs
Single-Stream

- Concat image–text inputs
Single- & Dual-Stream Architectures

Single-Stream

- Concat image–text inputs
Single- & Dual-Stream Architectures

Single-Stream

• Concat image–text inputs

Dual-Stream
Single- & Dual-Stream Architectures

Single-Stream
- Concat image–text inputs

Dual-Stream
1. Image and text independently
Single- & Dual-Stream Architectures

Single-Stream
- Concat image–text inputs

Dual-Stream
1. Image and text independently
2. Cross-modal layers
Single- & Dual-Stream Architectures

Single-Stream
- Concat image–text inputs

Dual-Stream
1. Image and text independently
2. Cross-modal layers
 - Intra-modal
Single- & Dual-Stream Architectures

Single-Stream

• Concat image–text inputs

Dual-Stream

1. Image and text independently

2. Cross-modal layers
 • Intra-modal
 • Inter-modal
Single- & Dual-Stream Architectures

Single-Stream

• Concat image–text inputs

Dual-Stream

1. Image and text independently
2. Cross-modal layers
 • Intra-modal
 • Inter-modal
Single- & Dual-Stream Architectures

Single-Stream
- Concat image–text inputs

Dual-Stream
1. Image and text independently
2. Cross-modal layers
 - Intra-modal
 - Inter-modal
A Unified Framework
A Unified Framework
A Unified Framework

Single-Stream Attention

\[w, v, \ldots, v \]
A Unified Framework

Single-Stream Attention
A Unified Framework

Single-Stream Attention

Dual-Stream Intra-modal Attention
A Unified Framework

Single-Stream Attention

Dual-Stream Intra-modal Attention
A Unified Framework

Single-Stream Attention

Dual-Stream Intra-modal Attention

Dual-Stream Inter-modal Attention
A Unified Framework

Single-Stream Attention

Dual-Stream Intra-modal Attention

Dual-Stream Inter-modal Attention
A Unified Framework

Single-Stream Attention

Dual-Stream Intra-modal Attention

Dual-Stream Inter-modal Attention

Gated Bimodal Transformer Layer
Gated Bimodal Transformer Layer

- Single- and dual-stream layers are special cases
Gated Bimodal Transformer Layer

- Single- and dual-stream layers are special cases
- Takes a set of fixed binary variables \(\{\gamma, \tau\} \)
A Unified Framework

Single-Stream Attention

Dual-Stream Intra-modal Attention

Dual-Stream Inter-modal Attention

Gated Bimodal Transformer Layer
- Single- and dual-stream layers are special cases
- Takes a set of fixed binary variables \(\{\gamma, \tau\} \)
 - \(\gamma \): regulate the cross-modal interactions
A Unified Framework

Gated Bimodal Transformer Layer

- Single- and dual-stream layers are special cases
- Takes a set of fixed binary variables \(\{ \gamma, \tau \} \)
 - \(\gamma \): regulate the cross-modal interactions
 - \(\tau \): control if parameters are tied between modalities
Downstream Performance
Pretraining Data Confounded?
Pretraining Data Confound?

![Graph showing VQA-score vs. Data Type and Data Size]

- **Data Type**: In-domain (VQA-score), Out-of-domain (VQA-score)
- **Data Size**: 9.5 M, 3.0 M, 0.6 M
Pretraining Data Confound?

V&L BERTs are pretrained on different amounts and types of data
Controlled Experiments Setup
Controlled Experiments Setup

Models

- **Single-Stream**: VL-BERT (Su+, 2020) VisualBERT (Li+, 2019) and UNITER (Chen+, 2020)
- **Dual-Stream**: ViLBERT (Lu+, 2019) LXMERT (Tan&Bansal, 2019)
- Re-implemented using our unified framework in VOLTA (github.com/e-bug/volta)
Controlled Experiments Setup

Models

• *Dual-Stream*: ViLBERT *(Lu+, 2019)* LXMERT *(Tan&Bansal, 2019)*

• Re-implemented using our unified framework in VOLTA (github.com/e-bug/volta)

Pretraining data

• Conceptual Captions (2.77M)
Controlled Experiments Setup

Models

- **Single-Stream**: VL-BERT (Su+, 2020) VisualBERT (Li+, 2019) and UNITER (Chen+, 2020)
- **Dual-Stream**: ViLBERT (Lu+, 2019) LXMERT (Tan&Bansal, 2019)
- Re-implemented using our unified framework in VOLTA (github.com/e-bug/volta)

Pretraining data

- Conceptual Captions (2.77M)

Downstream tasks

- VQAv2, RefCOCO+, NLVR2 and Flickr30K
Controlled Experiments Setup

Models

• **Single-Stream**: VL-BERT (Su+, 2020) VisualBERT (Li+, 2019) and UNITER (Chen+, 2020)
• **Dual-Stream**: ViLBERT (Lu+, 2019) LXMERT (Tan&Bansal, 2019)
• Re-implemented using our unified framework in VOLTA (github.com/e-bug/volta)

Pretraining data

• Conceptual Captions (2.77M)

Downstream tasks

• VQAv2, RefCOCO+, NLVR2 and Flickr30K

Controlled setup

• Same data & fixed set of hyperparameters
• Multiple pretraining and fine-tuning seeds
Controlled Experiments Results
Controlled Experiments Results

RefCOCO+

Pretrain x10 & Fine-tune x1
Controlled Experiments Results

RefCOCO+
NLVR2
VQAv2
Flickr30k

Pretrain x10 & Fine-tune x1
Controlled Experiments Results

Pretrain x1 & Fine-tune x10

RefCOCO+

NLVR2

VQAv2

Flickr30k

Pretrain x1 & Fine-tune x1
Controlled Experiments Results

1. Substantial variation due to seed
Controlled Experiments Results

1. Substantial variation due to seed
2. Similar performance when trained with the same setup
Controlled Experiments Results

1. Substantial variation due to seed
2. Similar performance when trained with the same setup
3. Single- & Dual-Stream are on par
Controlled Experiments Results

1. Substantial variation due to seed
2. Similar performance when trained with the same setup
3. Single- & Dual-Stream are on par
4. Embedding layer is crucial
Conclusions
Conclusions

Unified mathematical and software framework for V&L BERTs
Conclusions

Unified mathematical and software framework for V&L BERTs

Meta-Analysis of 5 V&L BERTs
Conclusions

Unified mathematical and software framework for V&L BERTs

Meta-Analysis of 5 V&L BERTs

• Most differences due to training data & hyperparameters
Conclusions

Unified mathematical and software framework for V&L BERTs

Meta-Analysis of 5 V&L BERTs

- Most differences due to training data & hyperparameters
- Embedding layer plays a crucial role
Conclusions

Unified mathematical and software framework for V&L BERTs

Meta-Analysis of 5 V&L BERTs

• Most differences due to training data & hyperparameters
• Embedding layer plays a crucial role

Future work should
Conclusions

Unified mathematical and software framework for V&L BERTs

Meta-Analysis of 5 V&L BERTs

• Most differences due to training data & hyperparameters
• Embedding layer plays a crucial role

Future work should

• Train on similar datasets
• Report variance
Conclusions

Unified mathematical and software framework for V&L BERTs

Meta-Analysis of 5 V&L BERTs
• Most differences due to training data & hyperparameters
• Embedding layer plays a crucial role

Future work *should*
• Train on similar datasets
• Report variance

Code, models (50!) and data available online
• github.com/e-bug/volta
• github.com/e-bug/mpre-unmasked
Conclusions

Unified mathematical and software framework for V&L BERTs

Meta-Analysis of 5 V&L BERTs

• Most differences due to training data & hyperparameters
• Embedding layer plays a crucial role

Future work should

• Train on similar datasets
• Report variance

Code, models (50!) and data available online

• github.com/e-bug/volta
• github.com/e-bug/mpre-unmasked