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Visual Question Answering (VOA)

Question: What is this truck?
Answer: Fire truck

Example from: https://visualga.org/vga_v2 teaser.html



https://visualqa.org/vqa_v2_teaser.html

Progress on VOAv2 (Goyal et al., 2017)
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e |s the VQA challenge solved?
o No, we need to better evaluate our models
o Are models learning to solve the task of VQA or the dataset? @



Experimental Setup

Datasets
VQAv2 VG GQA VizWiz
(Goyal et al., 2017) (Krishna et al., 2017) (Hudson and Manning, 2019) (Gurari et al., 2018)
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Q: What is the color of Q: What are these Q: What is the large Q: Please fully describe

the hydrant? zebras doing? container made of? what you see in this
image, thank you.
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Experimental Setup [cont’d]
Models

e Two representative, widely-used pretrained models achieving strong
performance in V&L tasks:
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Research Questions

1. How well do current VQA models generalize under out-of-distribution (OOD)
settings?

2. Are generative models more robust to OOD generalization than discriminative
ones?

3. Does multimodal pretraining help with OOD generalization?

4. Are current automatic VQA evaluation metrics suitable for OOD evaluation?

O



[ID vs OOD (out-of-distribution) performance
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[ID vs OOD (out-of-distribution) performance
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[ID vs OOD (out-of-distribution) performance
ALBEF generative
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How well do current VQA models generalize under OOD settings?

Poorly @
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Generative vs Discriminative Evaluation

e Discriminative models are bounded by the top-k answer sets
e This limitation does not apply to generative evaluation

Are generative models more robust to OOD
generalization than discriminative ones?
Yes, in most cases

O
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The Case for Multimodal Pretraining

ALBEF generative

Is multimodal pretraining helpful?
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OO0D Evaluation of VOQA Systems

Generative models are more robust

Multimodal pretraining is often
helpful

Yet current models perform poorly..

..or do they?

VG Question: When was this photo taken?
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OO0D Evaluation of VOQA Systems: Human Evaluation
ViLBERT generative

Are current automatic VQA evaluation metrics suitable?Not really

e Human evaluation is more e Human evaluation is more
helpful in the generative setting helpful in the OOD settings
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OO0OD Evaluation of VOA Systems: Human Evaluation [cont'd]
ViLBERT generative

Does human evaluation close the OOD gap? Not really

Even after human evaluation, models still exhibit poor OOD generalization
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Takeaways




Summary
OOD Generalization as a more rigorous and representative evaluation protocol

e How well do current VQA models generalize under OOD settings?
Poorly

e Are generative models more robust to OOD generalization than discriminative ones?
Yes, in most cases

e Does multimodal pretraining help with OOD generalization?
Yes, in most cases

e Are current automatic VQA evaluation metrics suitable for OOD evaluation?

Not really @
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Next Steps Thank you!

e Evaluation Metric: need more robust automatic metric or scalable human
evaluation

o Modelljpgriaun©g raareliogieadsp@Tbt dagisoumisioas correlations
E.g. “Is the cheese to the right or to the left of the empty plate?”

o Overfitting to answer priors
E.g., “What is the skateboarder wearing to protect his head?” - “helmet”

o Overfitting to question format
E.g., “What animal.... ?”, “What kind of animal ... ?” (GQA)
45% accuracy drop

“Who is .. ?", “What is .. ?" (VG)

O
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