Weakly-Supervised Learning of Visual Relations in Multimodal Pretraining

Emanuele Bugliarello | Aida Nematzadeh | Lisa Anne Hendricks

emanuele@di.ku.dk

Google DeepMind

We improve fine-grained understanding in VLMs by modelling the *structure* of visual scenes with a small amount of human-annotated scene graphs

UNIVERSITY OF

COPENHAGEN

Learning Visual Relations

Verbalised Scene Graphs (VSG)

front of cat [SEP]

Data-to-text strategy

- Sample K triplets
- Sort them based on the subject location
- Verbalise into a caption: "[CLS] $s_1 r_1 o_1$ [SEP] ... $s_K r_K o_K$ [SEP]" 3.
- Apply standard (e.g., ALBEF) image—text losses

Pretraining cross-entropy objective

Encode a triplet's Subject and Object independently (by masking their visual contexts)

*X*MRC

- Pool their final cross-modal representations ([CLS] token) 2.
- Concat pooled representations and map them to V outputs 3. (relation labels) with an MLP

Zero-Shot Evaluation Tasks

Image—Text Retrieval

Coarse-grained A person is riding a horse.

Dense Fine-grained A person with long hair and beige sweater is smiling and riding

Fine-grained SVO-Probes

A woman lying with a dog

Caption: The cow is **ahead of** the person Label: FALSE

Fine-grained VALSE

Fine-grained VSR

Scene Graphs for Fine-grained Understanding

Baselines

cat [SEP]

- ALBEF (coarse-grained)
- **X-VLM** (fine-grained: ALBEF+bbox prediction)
- **Relation-enhanced (ours)**
- **ReALBEF** (ALBEF + VSG + MRC)
- **ReX-VLM** (X-VLM + VSG + MRC)

Model		VSR Random	VALSE	SVO-Probes	Stanford Paragraphs	
Name	Role	Dev / Test Acc	Acc _r	Acc _r	IR@1/5	TR@1/5
ALBEF _{13M}	BASELINE	60.4 / 59.4	72.2	86.7	77.1 / 93.7	73.7 / 90.3
REALBEF _{13M}	+RELATIONS	<u>64.6 / 61.3</u>	70.4	87.5	<u>86.7</u> / <u>97.5</u>	<u>86.5</u> / <u>97.2</u>
$X-VLM_{13M}$	+LOCALISATION	61.1 / 60.5	71.3	87.3	80.3 / 94.9	76.8 / 92.4
$REX-VLM_{13M}$	+BOTH	<u>68.4</u> / <u>63.5</u>	73.3	88.1	<u>89.3</u> / <u>98.0</u>	<u>88.8</u> / <u>97.7</u>

- Enhanced visual spatial reasoning capabilities
 - ReX-VLM SOTA on zero-shot VSR: +6.8/3.0 w.r.t. X-VLM
 - ► ReALBEF gains +3.8/0.8 w.r.t. ALBEF ⇒ modelling relations is helpful for VSR
- Improved fine-grained understanding
 - ReX-VLM gains +1.7 on VALSE and +0.8 on SVO-Probes

