Weakly-Supervised Learning of Visual Relations in Multimodal Pretraining
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Learning Visual Relations
Verbalised Scene Graphs (VSG) Masked Relation Classification (MRC)
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Data-to-text strategy Pretraining cross-entropy objective
1. Sample K triplets 1. Encode a triplet’s Subject and Object independently (by
2. Sort them based on the subject location masking their visual contexts)
3. Verbalise into a caption: “[CLS] s; r; 01 [SEP] ... Sk rk Ok [SEP]” 2. Pool their final cross-modal representations ([CLS] token)
4. Apply standard (e.g., ALBEF) image —text losses 3. Concat pooled representations and map them to V outputs

(relation labels) with an MLP

Zero-Shot Evaluation Tasks Scene Graphs for Fine-grained Understanding

Image—Text Retrieval Baselines Relation-enhanced (ours)
Coarse_grained Dense Fine_grained ® ALBEF (COaFSG-gI’aIﬂed) ® RGALBEF (ALBEF + VSG + MRC)
A person is A person with long e X-VLM (fine-grained: ALBEF+bbox prediction) e ReX-VLM (X-VLM + VSG + MRC)
riding a horse. hair and beige sweater
is smiling and riding ... Model VSR Random VALSE SVO-Probes Stanford Paragraphs
: | Name Role Dev / Test Acc  Acc, Acc;, IR@1/5 TR@1/5
ALBEF3m BASELINE 60.4/59.4 72.2 86.7 77.17/93.77 73.7/90.3
REALBEFi3m +RELATIONS 64.6/61.3 70.4 87.5 86.7/97.5 86.5/97.2
Fine-grained SVO-Probes Fine-grained VSR X-VLMi3m +LOCALISATION 61.1/60.5 71.3 87.3 80.3/949 76.8/92.4
e — REX-VLMsm +BOTH 68.4/63.5 73.3 88.1 89.3/98.0 88.8/97.7
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Enhanced visual spatial reasoning capabilities

> ReX-VLM SOTA on zero-shot VSR: +6.8/3.0 w.r.t. X-VLM

> ReALBEF gains +3.8/0.8 w.r.t. ALBEF = modelling relations is helpful for VSR
Improved fine-grained understanding

Caption: The cow is ahead of the person
Label: FALSE

A woman lying with a dog
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Fine-grained VALSE > ReX-VLM gains +1.7 on VALSE and +0.8 on SVO-Probes
pieces existence  plurality counting Other pieces: > Substantially better fine-grained understanding on dense captions:
instruments  existential semantic number balanced, adver- :
cnantifiers sarial, small mmbers > ReX-VLM gains +9.0/12.0 on Stanford Paragraphs
caption . There are A small copper vase - There are four/six ze- > Similar trends when pretraining on 3M images but gains are higher on larger 13M Web corporal!
(blue) / foil  no animals  with some flowers /  bras.

(orange) / animals exactly one flower in e actions
shown. it.
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Competitive coarse-grained retrieval on COCO and Flickr30K
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» Small supervised datasets are useful! 0K 200K 400K o 2008 4008
* Future work: automatic large-scale data generation 0] 55 oo 1 modelling relations » ReX-VLM requires longer training to achieve
N alone is typically peak performance across fine-grained tasks
Pretraining checkpoint selection can be important 1 0 .0 ] || better than » When should we stop pretraining?
* When to stop pretraining? M rr;odellllng objects » COCO Dev is helpful for coarse-grained
at scale

* How to balance performance across tasks? S R = ey > Not a single checkpoint for fine-grained




