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VLMs Struggle with Fine-grained Tasks

Strong vision-language models still struggle with fine-grained understanding

Fine-grained Verb Understanding Fine-grained VSR
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.. but supervised localisation helps

X-VLM (Zeng+ ICML'22), a model with localization supervision, outperforms
larger models trained on more data on fine-grained tasks (Bugliarello+ ACL'23)
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Can modelling visual relations
improve fine-grained
understanding?
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Supervised Visual Relations for Fine-grained Understanding

e How can we incorporate visual relation data into multimodal pretraining?

e Does modelling visual relations impact task performance?

e How do our two new contributions impact task performance?



Method 1: Verbalised Scene Graphs (VSG)

Data-to-text strategy
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Method 1: Verbalised Scene Graphs (VSG)

Data-to-text strategy

1.  Sample K scene graph triplets
2. Sort them on the subject location
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Method 1: Verbalised Scene Graphs (VSG)

Data-to-text strategy

1.

2.
3.
4

Sample K scene graph triplets

Sort them on the subject location

Verbalise into a caption: “[CLS] s, r o, [SEP] .. s, r,0 [SEP]"
Apply standard (e.g., ALBEF) image—text losses
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Method 2: Masked relation classification (MRC)
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Pretraining cross-entropy objective
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Pretraining cross-entropy objective

1.  Encode a triplet’s Subject and Object independently
(by masking their visual contexts)



Method 2: Masked relation classification (MRC)
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Pretraining cross-entropy objective

1.

2.

Encode a triplet’s Subject and Object independently
(by masking their visual contexts)
Pool their final cross-modal representations ([CLS] token)
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Method 2: Masked relation classification (MRC)
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Pretraining cross-entropy objective

1.

2.
3.

Encode a triplet’s Subject and Object independently

(by masking their visual contexts)

Pool their final cross-modal representations ([CLS] token)

Concat pooled representations and map them to V outputs (relation labels) with an MLP
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Supervised Visual Relations for Fine-grained Understanding

e How can we incorporate visual relation data into multimodal pretraining?
Two new methods: verbalised scene graphs & masked relation classification

e Does modelling visual relations impact task performance?

e How do our two new contributions impact task performance?
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Experimental Setup: Models

Trained on 3M and 13M data points
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Experimental Setup: Models
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Experimental Setup: Models
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Trained on 3M and 13M data points 8



Experimental Setup: Models
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Experimental Setup: Zero-Shot Tasks

Fine-grained SVO-Probes Fine-grained VSR Coarse-grained Image Retrieval

A woman lying with a dog

Caption: The cow is ahead of the person
Label: FALSE
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Results: Spatial Reasoning
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e Generally, spatial reasoning improves when
including VSG and MRC

Caution: VSR val/test performance do not always correlate!
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Results: Spatial Reasoning
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e Generally, spatial reasoning improves when
including VSG and MRC

e Gains of our approaches increase when
pretraining on more data (13M vs. 3M)

Caution: VSR val/test performance do not always correlate!
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Results: Other Fine-grained Tasks
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ReX-VLM (13M) performs best across all
the fine-grained tasks

= Relations are useful even when only
being a tiny percentage of pretrain data

ReALBEF models are on par with ALBEF
= Harder to learn relations w/o localisation
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Results: Fine-grained Dense Image—Text Retrieval
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Test our models for the ability to
understand long fine-grained descriptions

Our relation-enhanced models gain from
+5.6pp to +12.8pp on this task
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Results: Coarse-grained Image—Text Retrieval
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ALBEF and X-VLM quickly top out
ReALBEF and ReX-VLM achieve comparable performance later in training
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Check our paper for more results exploring checkpoint selection strategies!
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Supervised Visual Relations for Fine-grained Understanding

e How can we incorporate visual relation data into multimodal pretraining?
Two new methods: verbalised scene graphs & masked relation classification

e Does modelling visual relations impact task performance?
Better on fine-grained tasks & comparable for coarse-grained tasks

e How do our two new contributions impact task performance?
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Ablations
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Combining VSG and MRC often
leads to the best performance

VSG is key to perform well on
image—paragraph retrieval
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Ablations
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Combining VSG and MRC often
leads to the best performance

VSG is key to perform well on
image—paragraph retrieval

On Stanford Paragraphs
Larger #relations is important

Sorting the relations is not
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Ablations

100

X-VLMi3m
B VSG
+MRC
0 +VSG+MRC

| ——

i

VALSE VSR Dev VSR Test SVo ParaTR@! F30K TR@! COCOTR@!

X-VLMi3py
B2 +8 Rels Sorted (VSG)
[EEE 43 Rels Sorted

[ZZ3 +8 Rels Unsorted
0 +3 Rels Unsorted

Para Dev IR@1

Para Dev TR@1

COCO Dev TR@1  COCO Dev IR@1

w

ALBEFi3m
E +Localisation (X-VLM)
+Relations (ReALBEF)
D +Both (ReX-VLM)

P

VALSE VSR Dev VSR Test SVOo Para TR@! F30K TR@! COCO TR@1

Combining VSG and MRC often
leads to the best performance

VSG is key to perform well on
image—paragraph retrieval

On Stanford Paragraphs
Larger #relations is important

Sorting the relations is not

Localisation + relations is best

Relations > localisation at scale
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Supervised Visual Relations for Fine-grained Understanding

e How can we incorporate visual relation data into multimodal pretraining?
Two new methods: verbalised scene graphs & masked relation classification

e Does modelling visual relations impact task performance?
Better on fine-grained tasks & comparable for coarse-grained tasks

e How do our two new contributions impact task performance?
Both VSG and MRC are important for best performance
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Conclusions

Two new ways to use scene graph data in multimodal pretraining

Improvements on fine-grained tasks

e Small supervised datasets are useful!
e More data can probably help = automatic data generation for future work

Depending on checkpoint selection strategy, models can achieve comparable
performance on coarse-grained tasks

e Open questions: balancing performance across tasks & checkpoint selection
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