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P eople are regularly faced with tasks that can
be seen as navigating information spaces in
which they only get access to local and neigh-

boring information, while lacking a global view of
the network. The aim of this project is to study
which properties of a network have the largest im-
pact on navigability. We do not achieve this goal
during the semester because most of the time has
been spent to properly transform the original data
to provide a final dataset that can then be used in
different scenarios. So, we meticulously describe
here all the processing phases we apply in order
to produce such final dataset. We also show some
early results regarding the evolution of the proper-
ties underlying the Wikipedia network over time.

1 Introduction

People navigate information networks in their everyday
life in order to acquire the knowledge they seek. In fact,
information is usually spread over a different number
of interconnected sources and it is then fundamental
to being able to efficiently navigate these networks.
Example networks are citation networks to find the
work done in a given field, or just browsing the Web.
This type of navigation can be mapped to a search

in a graph, where nodes represent pieces of knowledge
and edges indicate existing connections between two
different nodes. However, we do not usually have a
full view of the underlying networks. Hence, if we
want to find the shortest path connecting two different
resources, we cannot rely on well-known results such
as Dijkstra’s algorithm. Furthermore, people often do
not know which nodes exist in the network and they
could easily get lost.
It is then of primary importance to understand how

people navigate across the contents available online
and provide insights into how the task of wayfinding

in information networks can be made easier. The aim
of this project is indeed to evaluate how different
decentralized search algorithms behave on different
snapshots of a giant network and then infer a model
to help people in exploratory searches, as we usually
gather information from different sources which are
commonly not known in advance.

A distinct information network is the one underlying
Wikipedia [15], the largest free online encyclopedia,
which not only does it store human knowledge, but
also provides connections among single pieces of infor-
mation through hyperlinks.
We choose Wikipedia as our validation domain not

only because it contains a rich knowledge database,
but also because of the existence of agents trained on
humans performing a game, Wikispeedia, in which
the goal is to find the shortest path from a given start to
a given target article by clicking only on the available
links in each page.
We have available the entire history of revisions of

Wikipedia and so we can analyze how the properties
of the network evolved over time and investigate
what types of modifications have the largest impact
on navigability. For instance, while having more
links could reduce the average shortest path as more
shortcuts would be available, this could also increase
the risk of getting lost during the search as the user
is flooded with a large number of possible pages she
could visit next.

We do not reach the navigability study in this project
as we spent all the time to properly processing the
data in order to have a final dataset that can be used
in future projects as well. Nevertheless, we introduce
here some early results regarding the evolution of
the properties of the Wikipedia network over the years.

The remainder of the report is organized as follows.
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We first introduce the closest studies to our work, and
we give an overview of the machines that we use to
crunch the data. We then move to the core part of the
project: processing the massive Wikipedia revisions
dataset. After that, we report on some early results that
we have obtained and discuss some of the challenges
related to this work. Finally, we present directions for
future work and conclude this report. In addition, we
report on some extremely useful knowledge that we
have acquired during the semester in the appendices.

2 Related Work

The work related to our project can be separated in
three parts: Data management systems that enable
users to store large volumes of historical graph data,
graph properties evolution over time and decentralized
search in networks.

Several temporal data indexing techniques have
been proposed for relational databases. Salzberg and
Tsotras [8] compared different indexing techniques
for supporting efficient access to temporal data. Here,
they examined two extreme approaches to supporting
snapshot retrieval queries, called the “copy” and the
“log” approaches. The “copy” approach stores a copy
of the entire database for each time at least one change
occurs. These copies are indexed by time. Clearly, the
major disadvantage of the “copy” approach is with the
space requirements. To reduce the space requirements,
the “log” approach stores only the changes that occur
in the database, thus ensuring requesting only the
minimal space. However, this approach incurs large
reconstruction costs. Combinations of these two
straightforward approaches are possible and are
referred as “copy+log” approaches.

Many of the properties of interests in studies on
graph structures are based on two parameters: the
nodes’ degrees and the distances between pairs
of nodes (as measured by shortest-path length).
Networks evolve over time by the addition and
the deletion of nodes and edges, and most models
of network evolution capture two patterns in the
growth pattern: constant average degree and slowly
growing diameter. However, Leskovec, Kleinberg and
Faloutsos [6] showed that different real networks from
several domains experience an increasing average
degree and a decreasing effective diameter as the
networks grow.

Decentralized search in networks considers a sce-
nario where a starting node s is trying to send a mes-
sage to a given target node t by forwarding the message
to one of its neighbors, and this process continues until
t is eventually reached. These studies can be traced
back to Milgram’s small-world experiment [7] and the
algorithmic problem of decentralized searches in net-

works [5]. West and Leskovec [10] performed a large-
scale study of user navigation behavior. The authors
analyzed a collection of clickstreams of users who were
playing a navigation game (Wikispeedia [11]) in a net-
work of links between the concepts of Wikipedia. In
their work, they found that human navigation behavior,
while mostly very efficient, differs from shortest paths.
For example, users typically navigate through high-
degree hubs in the early phase and then apply content
similarity as a criteria for finding the destination node.
In subsequent work [9], the authors analyzed a

number of decentralized search algorithms using vari-
ous distance functions and benchmarked them against
their human click corpus. The authors also found that
even simple search strategies, such as utilizing node
degrees, outperform human information seeking. They
introduce different agents, both heuristic-based and
machine learning-based. In particular, our first step to-
wards navigability studies over time would have started
with a heuristic, similarity-based agent using a similar-
ity measure not investigated in this paper.

3 System Overview

Before diving into the core of the project, we briefly
introduce the three architectures we worked on during
the semester and that will be referenced in the next
section. More information and useful pointers are
then provided in Appendix A.

We refer to them as laptop, dlab-server (or sim-
ply server) and cluster, and their specifications are
reported in Table 1.
The laptop is only used to develop the algorithms and
test them on small samples of the datasets. The server
is mainly used to run tasks that are not very computa-
tionally expensive and, in particular, to generate data
structures that are used during the main processing
steps. Once the data is processed, the analysis of the
resulting graphs is carried out on the server. Finally,
the cluster is where the big data processing happens.
It consists of seven nodes for a total of 266 VCores and
1.63 TB of RAM. Table 2 shows, instead, the storage
that is available on the remote systems.
In particular, on the server, there is no backup for

data in the home directory and on /scratch/ . More-
over, on the cluster, there is a replica 3 for the data on
the HDFS user directory /user/gaspar/ and so only
≈ 1.6 TB are actually available.

Machine Directory Storage

dlab-server /scratch/ 3.6 TB
dlab-server /dlabdata1/ (NFS) 1 TB
cluster /home/gaspar/ 31 GB
cluster /user/gaspar/ (HDFS) 5 TB

Table 2: Available storage on the remote machines.
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Name Address CPUs RAM Spark

laptop localhost 4 processors (Intel Core i5-5200U) 8 GB 1.6.3
dlab-server iccluster111.iccluster.epfl.ch 48 processors (Intel Xeon E5-2680 v3) 252 GB 1.6.3
cluster hadoop.iccluster.epfl.ch 7 nodes, dual CPUs (Intel Xeon E5-2680 v3) 1.63 TB 1.6.0

Table 1: Specifications of the machines employed throughout the project.

4 Data, Data & Data

This project is on big data analytics: so, let’s start
by talking about the data that will be used for
our analysis. The code used for this section can
be found in the GitHub repository [1] under the
data_transformations directory.

All the datasets introduced in this section are
stored as Apache Parquet [3] files, compressed with
Snappy [4]. Apache Parquet is an open-source column-
oriented data store of the Apache Hadoop ecosystem.
It provides efficient data compression and encoding
schemes, where compression is performed column by
column (hence enabling different encoding schemes
to be used for text and integer data).
Snappy is a fast data compression and decompression
library written by Google based on LZ77. It does not
aim for maximum compression but rather for very high
speeds and reasonable compression.

4.1 Original data

We start by describing the Wikipedia dataset available
at EPFL comprehending almost 16 years of article
revisions (from January 2001 to October 2016). More
precisely, the timestamp of the earliest record is
1/16/2001 21:08:33, while the one of the latest is
10/1/2016 21:39:16.
The dataset thus contains all the revisions in Wikipedia
until October 1, 2016 since Wikipedia was launched
on January 15, 2001.

The dataset is available on the cluster’s
Hadoop Distributed File System (HDFS) under
/datasets/wikipedia/en-oct-2016/ . It is dis-
tributed in 100, 000 parts, from part-r-00000 to
part-r-99999 amd it has 685, 387, 342 entries, for a
total of 5.9 TB.

It comes as a Spark DataFrame (defined in Spark
SQL: Spark’s interface for working with structured and
semistructured data). The corresponding schema is
shown in Table 3 along with an example.
We now provide a brief description of most of the fields
in this schema (the ones used in this project).

• redirect: the article this article redirects to. It
can either be null1 (if an article is not redi-
recting to another one) or a string including

1Equivalent to None in Python.

Schema Example

redirect: UTF-8 null
ns: UTF-8 4
title: UTF-8 Wikipedia:Bot req...
id: UTF-8 912023
sha1: UTF-8 4qpzrtsom7ls28291...
revision_id: UTF-8 336934282
parentid: UTF-8 336930575
model: UTF-8 wikitext
text: UTF-8 {{Wikipedia progr...
text_xmlspace: UTF-8 preserve
ip: UTF-8 null
timestamp: int96 2010-01-10 05:06:...

Table 3: Schema and example of the original DataFrame.

the name of the article it redirects to, such as
{@title=Tautology};

• ns: the Wikipedia namespace of this article. A
Wikipedia namespace is a set of Wikipedia pages
whose names begin with a particular reserved
word recognized by the MediaWiki software (fol-
lowed by a colon). The list of the 34 current names-
paces can be found at [17];

• title: the title of this article;
• id: the id of this article;
• revision_id: the id of this revision (unique);
• parentid: the revision id of the version modified

by this entry;
• text: string containing the text of this article as

wiki markup [13]. You can see the format of this
text by clicking on the “Edit source” tab in any
Wikipedia article (at the left of the search box);

• ip: IP address of the person who created this
revision;

• timestamp: date and time of this revision. Spark
stores Timestamp in Parquet files as INT96 to avoid
precision lost of the nanoseconds field. In Python,
it is an instance of a datetime.datetime object.

4.2 Extracting hyperlinks from text

Recall that we want to study the evolution of
Wikipedia’s underlying graph. A graph consists of
vertices and edges. In this case, articles constitute
the vertices of the graph and hyperlinks in the text of
a given article define the outgoing edges from this
vertex to the corresponding articles’ vertices.
Hence, in our study we only need hyperlinks rather
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than the entire content of an article. This has a main
effect: tremendously reducing the size of the data.

In Wikipedia’s markup language, hyperlinks to
other Wikipedia articles in the text of an article
are created by putting double square brackets
around the title of the Wikipedia article to link
to. Thus, for example, [[Texas]] is a link to the
Wikipedia page with title Texas, i.e. a link to
https://en.wikipedia.org/wiki/Texas. Option-
ally, it is possible to use a vertical bar (|) to customize
how the link is rendered. For example, [[Texas|Lone
Star State]] would produce a link that is displayed
as “Lone Star State” but in fact links to Texas. For our
aim, we just extract the text before the vertical bar.

Apart from these standard links, hatnotes [16] have
been introduced, presumably, in September 2005 2.
Hatnotes are short sentences placed at the top of an
article or a section of an article with the aim of helping
readers locate a different article they might be seeking.
Since we want to extract a view of Wikipedia that
resembles as close as possible the experience a reader is
offered, we extract links contained into several possible
hatnotes. Namely, we extract links contained in the
following templates:

• "Main article: . . . ";
• "For more details on . . . , see . . . ";
• "See also . . . ";
• "Further information: . . . ";
• "This page is about . . . For other uses . . . ";
• "This page is about . . . It is not to be confused with

. . . ";
• "For . . . , see . . . ";
• "For other uses, see . . . ";
• ". . . redirects here. For other uses, see . . . ";
• "Not to be confused with . . . ";
• ". . . Not to be confused with . . . ".

Each of these templates is different and so we wrote
a regular expression (regex) and further parsing
to extract the hyperlinks in each of them. You can
have a look at the results of applying these regular
expressions at [2], where we merged all the regular
expressions into one by means of vertical lines
(alternation operator) to show all the regexs in just
one web page.

The parsing applied to these regular expressions
depends on which hatnote we find. Some of them
are easier to parse, for instance by just splitting the
retrieved content whenever a verical line (|) is found,
while others require more effort. For instance, let’s
consider the case of “about” hatnotes:
“This page is about ... For other uses ...”.

• The main template is: {{About|USE1}}, which
produces the following hatnote:

2The first revision of [16] is on September 14, 2005.

This page is about USE1. For other uses, see PAGETI-
TLE (disambiguation),
where PAGETITLE is the title of the article the
hatnote is into, and the text in blue indicates a
hyperlink to the page with the blue string as title.

• There are many other possibilities, but a gen-
eral pattern can be identified as the following:
{{About|USE1|USE2|PAGE2{{!}}PAGE2TITLE|
and|PAGE3#SUBSECTION|other uses}},
producing:
This page is about USE1. For USE2, see PAGE2TITLE
and PAGE3. For other uses, see PAGETITLE (disam-
biguation),
where the {{!}} magic word is used to give the
link a different title, and PAGE3 is a hyperlink to
PAGE3’s SUBSECTION section.

So, we see that if only one “use” is present or “other
uses” is specified at the end of the template, we need
to generate a link to a page having as title the article’s
title followed by “ (disambiguation)”. Finally, we
only need to extract strings referring to other articles
(PAGE*) and not strings explaining the meaning of the
corresponding pages (USE*).

Our first attempt to extract the hyperlinks from
the text used all the regular expressions combined
into a single one by concatenating all of them into a
single string, separating each others with a vertical
line. The idea behind this approach was to have
each revision scanned only once and hence improve
the performance (considering the large corpus of
articles that we have). However, after the parsing,
some articles went missing; forcing us to run each
regex separately. Surprisingly, the speed achieved
on the cluster by running each regex separately is
comparable with the one achieved when combining
them. Actually, for a batch of reviews we were using
for debugging, running each regex separately was
faster than when regexs were concatenated into one
(30 vs. 37 minutes). On the other hand, running the
combined regex was 3 minutes faster than running
each one separately on the laptop using a 1-GB sample
(7 vs. 10 minutes).

Before extracting the hyperlinks from an article, its
text is pre-processed as follows:

1. \n are replaced by a single space;
2. all the image maps [12] are removed from the

text: we are not interested in images and the links
shown in these pictures are encoded with the same
format as links in the text.

After extracting the links, we post-process them as
follows:

1. discard links to images or files, e.g.,
[[File:Example.jpg|thumbnail]];
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Schema Example

id: UTF-8 912023
title: UTF-8 Wikipedia:Bot requests
timestamp: int96 2007-01-26 16:54:18
standard_outlinks: array(array(string)) [[User:seans potato business, 1], [Skynet, 1], ...]
hatnotes_outlinks: array(array(string)) []
length: int 29155
redirect: UTF-8 null
revision_id: UTF-8 103395195
ip: UTF-8 null
parentid: UTF-8 103389117
ns: UTF-8 4

Table 4: Schema and example of the Links DataFrame.

2. discard links pointing to a section inside the same
article (self-loops), i.e., links starting with a pound
sign (#);

3. remove the section from an article’s title if the
link is pointing to a specific section of the arti-
cle. That is, if we have [[Target page#Target
section]], then we only keep Target page;

4.3 General Transformations

We firstly describe the processing steps applied to the
entire dataset. These transformations are independent
of the scope of this project and can be used in other
scenarios involving this dataset.

4.3.1 Links DataFrame

The first step in our pipeline basically consists of ex-
tracting the links from the text of each revision (as
described in Section 4.2). While doing so:

• in order to take into account how many times a
hyperlink to a certain article is present in the text
of an article, we keep a counter of its frequency;

• we store titles and frequencies for the standard
hyperlinks in an article (between double square
brackets) and titles and frequencies for hatnotes
separately. By having them split, we can then
study whether the latter actually help navigating
Wikipedia;

• we extract the titles of the articles in the redirect
column: for instance, {@title=Tautology} sim-
ply becomes Tautology;

• we add a new column, denoted length, with the
number of characters in the text of each revision.

The resulting schema along with an example is shown
in Table 4.

4.3.2 Resolved Links DataFrame

Not all the pages in Wikipedia are articles. Among
them, redirects play an important role. A redirect is

a page which automatically sends visitors to another
page, usually an article or section of an article [18].
For instance, if you type “UK” in the search box or
in the address bar, you will be taken to the article
“United Kingdom”, and there will be a special note at
the top of the page saying “(Redirected from UK)”.
A redirect page contains special wikitext which defines
it as a redirect page and specifies the target page (or
even a section within the target article).

Even though we have the wikitext of each revision
in our Links DataFrame, we already have the redirect
information readily available. In fact, after the
previous step, the redirect column either contains
null or the title of the article a given revision is
pointing to. Hence, the only thing we need to do
is substituting each occurrence of links to redirect
pages with the titles of the articles those pages divert
to. However, a page might change target over time
and this makes the replacing task intensive: For
each revision in the dataframe, we need to deter-
mine what is its view of Wikipedia in terms of redirects.

Our approach processes the entire dataset in
semester-long chunks, each starting on January 1 or
July 1, for each year between 2001 and 2016. For
each of these chunks, we retrieve all the entries in
the dataframe which point to other articles (whose
redirect column is not null). We then group these
entries by title and create a dictionary in which, for
each title, we have a list of (target page, first
timestamp) pairs, where first timestamp refers
to the first time a redirect page diverts to a given
target page until the target is replaced by another
one (therefore avoiding a new entry in the list for each
revision if the target article is unchanged).

Before resolving all the links, we proceed with a
normalization of all the titles as follows.
By looking at some of the extracted links, we noticed

that some of them start with a slash (/). These are links
to subpages [19]. The pages which these links point
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to are considered “subordinate” to the respective host
pages. Moreover, the subpage feature has been disabled
in the main namespace (0) of the English Wikipedia.
Our dataset contains some of these subpages under re-
visions with title “host page title/subpage title”.
Thus, in our normalization step, we prepend the title
of the host page to every link starting with a slash.
While going through the lists of links to find

subpages, we also perform another normalization
transformation in the titles (revision title, titles in the
revision’s links and title in the redirect column): We
replace white spaces by underscores (_) and capitalize
the first letter in the string.

After that, for each revision in the semester, we
simply do a lookup in this dictionary for each article
in its list of extracted hyperlinks and pick the target
page whose first timestamp is the greatest among the
ones that are earlier than the revision’s one. Note that
after substituting the redirecting articles with their
target articles, a new multiplicity count is needed as,
for instance, more pages could redirect to the same one.

The resulting schema is the same as in Table 4.

With this approach, we basically map a redirect
page to the page specified in its redirect column.
This might still results into substituting a redirect page
with another redirect if the target page is a redirect
page too. To circumvent this potential problem, we
tried to recursively lookup into the mapping dictionary
until the target page was not among its keys. However,
we ended up entering into an infinite loop already
during the first semester of data. Hence, for the sake
of simplicity, we only apply a single lookup for each
link to a redirect page and keep in mind that some
links point to redirect pages.
Other approaches could be devised in the future, such
as iterating up to a fixed maximum number of times
or making sure that the starting redirect page is not
reached in successive lookups.

With the described approach, we compute a dictio-
nary of redirects from scratch for each semester while
later semesters simply extend the entries in the dictio-
naries of previous semesters. Hence, we could have just
created a dictionary with all the entries for the entire
history once and used it in all the batches. However,
the main drawback of this approach is that each pro-
cess has to store in memory this large dictionary even
for the earliest periods, thus always requiring large
amount of memory reserved on the cluster. In addition,
loading the entire dictionary and distributing it to the
nodes in the cluster takes as much time as creating it.
With our approach, instead, we managed to tune the
memory allocation for the different chunks so as to
process the data with the minimal required memory
leading to no failure. See Appendix B for these details.
Another approach could have been to store the dictio-

nary at the end of each semester batch so as to make
it available to the next one. With this procedure, for
each semester, we would have had to load a dictionary
at the driver, add entries in the new semester and at
the end store it. However, loading such dictionaries is
at least as slow as creating them anew.
Finally, a different method that we initially thought
of was to create a DataFrame of redirects. That is, a
DataFrame only containing entries whose value in the
redirect column is not null and it is different from
the redirecting value of the same page at the time of
its previous revision (to avoid redundant information).
Even though the resulting DataFrame would have been
useful in general, we did not take this approach mostly
for time constraints. Nevertheless, the code to generate
it is available in the deltas_utils module.

4.3.3 Normalized Links DataFrame

This is the last step that we apply for the general
transformations of the dataset.

While playing with the data, we never noticed
values in the id, revision_id, parentid and ns
columns not consisting of integers. So, we firstly
perform an inspection to assess whether all these
columns actually contain integer values only. We
noticed that when converting a string column that
does not consist of integer values (such as the title
column), the resulting transformed entries are null.
Hence, our inspection simply consists of comparing
the number of null values in each of these columns
before and after applying the integer cast. Since
the number of null values is the same before and
after the conversion for each of these columns, it is
then possible to proceed representing them as integers.

After normalizing the columns in the dataset, we
conclude our normalization phase with a final step:
splitting the links in the standard and hatnotes lists in
“reachable” and “unreachable”.
To apply this transformation, we make use of a
DataFrame of “first revisions” containing, for each
normalized title in the history, the timestamp of its
first revision. This DataFrame is useful in the splitting
step in two ways: (i) it allows us to discard links
pointing to non-existing pages (pages not among the
titles in this data structure) due to, for example, typos;
and (ii) it allows us to discard links to pages not
existing at the moment the revision was created (they
are colored in red in Wikipedia). These links might
have been created afterwards but a reader could not
navigate to them at the revision’s time.
Hence, the links in the standard and hatnotes lists are
split into two lists each: a list with all the reachable
links and a list with all the unreachable links (for any
of the two previous reasons).
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Schema Example

id: int 24657
title: UTF-8 Standard_Chinese
timestamp: int96 2016-09-17 02:58:55
standard_outlinks: array(array(UTF-8)) [[Compound_(linguistics), 1], ...]
hatnotes_outlinks: array(array(UTF-8)) [[Standard_Chinese_(disambiguation), 1]]
standard_outlinks_failed: array(array(string)) [[Wikt:mingzi, 1], [Wikt:goodbye, 2], ...]
hatnotes_outlinks_failed: array(array(string)) []
length: int 49416
redirect: UTF-8 null
revision_id: int 739788881
ip: UTF-8 null
parentid: int 739788073
ns: int 0

Table 5: Schema and example of the Normalized Links DataFrame.

The schema of the so-created normalized DataFrame
is shown in Table 5 along with an example.

4.4 Testing

Once the general processing is finished, we perform
some tests to make sure that everything went well.
With this goal in mind, we looked for and eventually
found an article containing many corner cases.
In particular, while looking for such an article, we

made sure it still has red links as of the date we per-
formed the test. If this is not the case, then it would
take much longer to manually find if any of the links in
the text were red. In fact, if we browsed an old revision
of a page on Wikipedia and the entries corresponding
to its red links have been added to Wikipedia when the
test is performed, then those links would show up blue.
Having red links allows us to assert whether they have
been placed in any of the _failed lists.
Moreover, we were also looking for an article con-

taining non-ASCII characters to make sure they have
been preserved along the pipeline and that we could
print them without any errors.
The article matching these criteria is “Standard Chi-

nese” (id 24657). Specifically, we take the revision
739788881, edited on September 17, 2016. The re-
sults of the test are shown in the TestNormalizedRow
IPython notebook.

1. We firstly made sure that no link in the DataFrame
had white spaces between the words composing
the target pages.

2. Secondly, we checked that the red link was in one
of the lists of failed links.

3. Afterwards, we manually clicked, on Wikipedia,
many of the hyperlinks in the text of the arti-
cle, and we collected 13 links redirecting to other
pages. By inspecting these links, we could make
sure that the resolving phase was successful. Dur-
ing our inspection, all of the found redirects were
correctly resolved.

4. Finally, we printed links containing non-ASCII
characters (Chinese characters) to make sure Uni-
code characters had been correctly preserved.

During the last phase, we also added some func-
tions in the deltas_utils module to write and
print entries of the DataFrame as in the plain
text on Wikipedia (no Unicode-escaped characters).
You can have a look at how they work on the
Print&StoreDataframeInUnicode IPython notebook.
We also performed a general sanity check: we as-

serted that the total number of entries in the Normal-
ized Links DataFrame is the same as the total number
of entries in the original DataFrame.

4.5 Project-related Transformations

In our first plan, we decide to analyze the evolution of
Wikipedia on a monthly basis.
Hence, after the general-purpose processing phases
described above, we now present the processing steps
applied to the Normalized Links DataFrame to build
monthly snapshots of Wikipedia.

4.5.1 Monthly Links DataFrame

We start by creating a filtered DataFrame where there
is at most one entry per month for each article. In
particular, for each month, we keep the revision with
the latest timestamp for any of the articles modified in
that month. Moreover, we have decided to focus our
study only on articles in the main namespace (0) at the
beginning. So, as a first step, we only consider articles
whose namespace is 0. Note that they still contain
links to pages in other namespaces. We remove them
in the next phase.

Evaluating the evolution of Wikipedia’s navigability Page 7 of 15



Data, Data & Data

4.5.2 Monthly Edge Lists

The first step to generate a graph from the Monthly
Links DataFrame consists of removing any information
not related to a graph and storing the graph in
an appropriate format. There exist many libraries
to process graphs and one of the widely accepted
representations to read a graph from a file is an edge
list. An edge list file contains an edge per line as a
source-target pair. In particular, we create a TSV file
and we repeat an edge as many times as its frequency
in the original article.

In order to ensure a wide usability, each edge is
stored as a pair of integer values. In our case, we use
the id of each article as its integer representation.
Hence, we first create two dictionaries mapping ids to
titles and vice versa.

Collisions & other issues.
Before continuing describing the edge lists creation,
we open a small parenthesis to introduce an issue that
we have faced while creating the dictionaries that map
an id to its corresponding title and vice versa.
In creating these dictionaries, we firstly create a
dictionary having ids as keys and titles as values. After
that, we invert keys and values and create a dictionary
mapping titles to ids. However, after performing this
step we notice that the number of keys in the latter
dictionary is smaller than the number of values in the
former one. That is, multiple ids map to the same title.
There are 123 titles that have each two ids associated.
The vast majority consists of single-letter Unicode
characters. When we capitalize each title, the lower
case version of each of these letters becomes the
same as the title of the page containing the originally
capitalized letter. Even though most of the collisions
are of this type, this is not a big issue. In fact, most of
them redirect to their “normal” representation, both
in their lowercase page and in the uppercase page.
Nevertheless, we create a new TSV file mapping each
id to its correct title: to do so, we use Wikipedia’s query
API [wiki:query]. We do so in order to ensure that
the title to id dictionary has the correct mapping (and
not a random one determined by the last processed
title in each pair).
The remaining 18 collision pairs did not collide due
to the normalization process. Instead, they collided
because the title in the title column of the original
DataFrame is wrong. For instance, id 5702430 is said to
correspond to Akalgarh,I ndia, while it actually refers
to Akalgarh,L udhiana. This is what happens in most
cases. We checked some of these wrong mappings,
and, actually, none of them had ever a revision; in
other words, these ids have always been associated
with the wrong title in the original DataFrame. As a
result, any link pointing to any of these pages would
be incorrectly marked as failed.
A few colliding titles have different sources of error.

For instance, the two ids we have associated with Sam
Brooks are: 13144660 and 50220117. The former
does not exist on Wikipedia: this could be the id of
a duplicate article later removed, while the latter is
the id for the page entitled Sam Brooks (dramatist).
What is interesting, though, is that there actually
exists a page called Sam Brooks and it has a different
id associated to it (51959236) which, however, is
not among the ids in the original DataFrame. To
maintain an internal consistency, we then map id
50220117 to Sam Brooks (instead of its true title Sam
Brooks (dramatist)). On the other hand, titles like
Occitante and Ray Carver each have one of their ids
not in Wikipedia anymore and so we just map each
of them to the right one. These examples show the
types of collisions that we observe in mapping titles
to ids. To solve this issues, two paths can be taken:
(i) substitute wrong titles with the correct ones in all
the DataFrames or (ii) ignore missing titles but ensure
that each title is mapped to the correct id when there
are collisions. We take the second approach for the
sake of simplicity due to the small number of entries.
We then create an updated version of the dictionary
mapping titles to ids that ensures that colliding titles
point to the correct ids. We do this only for namespace
0 since it is the one we use in the edge lists creation.

Going back to creating edge lists, we proceed as
follows. We process each month of the Monthly Links
Dataframe independently. Each month has at most one
entry per article and for each article, we create two
edge lists: one for the standard links and one for the
hatnotes. These lists are only retrieved from the non-
failing links. To map titles to ids, we use the updated
dictionary described in the previous paragraph. By
using a dictionary with entries in namespace 0 only,
we can throw away links to articles not in the main
namespace by just checking whether they have an entry
in the dictionary or not (O(1)).
We then obtain edge lists that only contain vertices of
articles in namespace 0. The result of this operation,
for each month, is two folders (standard and hatnotes
links) containing various text files constituting different
parts of these lists (as usual with Spark). Once this
process is finished, we aggregate the different parts
inside each folder into a single file, and then append
the content of these two files into a third one that thus
contains all the edges of all the articles that have been
modified in a month.

4.5.3 Monthly Snapshots Edge Lists

After the previous step, we obtained edge lists only
consisting of edges whose sources have been modified
in a given month. Instead, as a final result, we want
each file for a given month, to represent the edge list
for all the articles in Wikipedia; i.e., a snapshot of
Wikipedia for that month. We achieve this with the
transformation presented here.
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We start from the first month in the dataset and in-
crementally build a dictionary where for each article
id, we have the latest list of outgoing links (in terms
of article ids). Then, for each month, we substitute
the entries of the modified sources with their new list
of edges. Moreover, we also purge sources whose last
revision in the original DataFrame is at least one year
older than the current month. In fact, if we did not do
that, we would end up accumulating articles that do
not exist anymore. This is just an approach we devised
to handle the missing information of removed articles.
We will be able to remove articles in the correct manner
when the deletion history will be made easily available
by the Wikimedia Foundation. By applying this heuris-
tic approach, we notice that the number of articles in
namespace 0 in the last revision is actually close to
the real number of articles in Wikipedia (5, 273, 880
vs. 5, 420, 384). If we kept all the articles, instead, the
number of nodes in the graph in October 2016 would
be much larger (more than 13 millions).

5 Early Results

After the previous step, all the data processing is
finished and we can start analyzing how properties
of the Wikipedia’s network evolve over time. Note,
however, that the results shown in this section are
partially wrong. This is because we noticed that
some redirections failed when we obtained these
instances of the graphs. An updated version of the
dataset, where these issues have been fixed, is under
processing at the moment of this writing and its results
will be shown during the project presentation.

Last snapshot.
As a first step, we have a look at the graph corre-
sponding to the last snapshot we generate (relative
to October 2016). Here, we see that the number of
articles in namespace 0 that are not redirecting pages
is equal to 5, 273, 880, while the total number of arti-
cles declared by Wikipedia is equal to 5, 420, 384 as of
06/08/2017 [14].
We first notice that there exist 148, 220 self loops in
the network despite we removed all the links pointing
to a section in the same article. Their presence can
be attributed to the redirect resolution step. Hence,
we firstly proceed by removing all the self loops. Af-
terwards, we notice that there is a huge number of
nodes with 0 out-degree (1, 231, 733). After noticing
that many of them were indeed redirects pages that
had not been correctly resolved, we have check all of
them with the current version of Wikipedia. We obtain
that 86% of them were indeed redirects. There are also
25, 905 articles with out-degree 1. Also in this case, we
queried the current version of Wikipedia, discovering
that 84% of them were redirects. Hence, we decide to
drop all the articles having out-degree 0 or 1.
While we still assume that removing self loops will be

Figure 1: Outdegree distribution in the last snapshot of
Wikipedia.

Figure 2: Indegree distribution in the last snapshot of
Wikipedia.

necessary for the final graph, we expect the number
of 0 and 1 out-degree nodes to be much smaller and
there will be no need to drop them.
Figures 1 and 2 show the distribution of the outde-

gree and indegree, respectively, for the last snapshot.
Here, we can see that only few nodes have a very large
degree, being it outdegree or indegree. Moreover, the
curves resemble the shape of a power law, but we will
need to run proper tests to assert that this intuition is
true. In the case it is, we could then evaluate how the
parameters of a power law distribution evolved over
time in Wikipedia. We now introduce early results on
the evolution of the properties of Wikipedia’s network.

As we expected from an encyclopedia, in Figure 3
the number of nodes increases over time as more ar-
ticles are added. We notice that the number of nodes
decreases in the last year but this could be due to the
pruning step that we apply.

Figure 3: Evolution of the number of nodes in Wikipedia’s
network.
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Figure 4: Evolution of the number of edges in Wikipedia’s
network.

Figure 5: Evolution of the graph density in Wikipedia’s net-
work.

Figure 6: Evolution of the median degrees in Wikipedia’s net-
work.

In this graph, we also plot the Gompertz growth
model that was created in June 2010 [14]. We see
that the number of nodes approximately follows this
function, though more accurate parameters could be
obtained by fitting the function on the data we now
have available.
Figure 4 shows that also the number of edges increases
over time and, in particular, as can be seen in Figure
5, their growth rate is higher than for the number of
nodes, resulting in a densification of the graph.

Figure 6 plots how the median outdegree and inde-
gree evolved over time. We can clearly see an increas-
ing trend for both quantities but the median number
of outdegree increases much more rapidly. This is what
we expected as more articles are available and hence
more interconnections can be established. This is also
another way to see the densification over the years.

Finally, we have a look at the connected components.
Figure 7 displays the average size of the strongly con-
nected components over time. Here, we can see that
components expand as more articles add pieces of miss-
ing information for different articles on related topics.
Moreover, the giant strongly connected component en-
larges over time, as shown in the plot at the left of
Figure 8. It is also interesting to look at the graph
in the right inside the same Figure. It plots the ratio
between the size of the giant component in a given
month and the number of nodes in that month. We

Figure 7: Evolution of the average size of the strongly con-
nected components.

Figure 8: Evolution of the size of the largest strongly connected
component in absolute values and as a percentage
of the total number of nodes in each month.

can see that it has an increasing trend, meaning that
the addition of new nodes does not impact badly the
connectivity of the network, which instead keeps im-
proving through the years.
Overall, the latter two figures suggest a reduction of
the diameter in Wikipedia’s network over time.

6 Conclusion and Future Work

Processing big datasets not only is a challenging task,
but also a time-consuming one. Throughout this
project, we successfully extracted the outgoing links in
the text of each revision of all the articles in Wikipedia
since its inception. Trivial as it might sound, this task
required a lot of effort and much more time than it is
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usually assumed to be spent on a semester project.

We provide a parser that not only does it extract
standard hyperlinks from the wiki-text of an article,
but also the majority of hatnotes. We believe such
parser could be useful to many researchers who are
interested in working with a network of links that
closely resemble the true experience a reader is offered.

By the end of the project we have available two
major datasets: A DataFrame containing the outgoing
hyperlinks in its text, split between reachable and
unreachable, and for which all the redirects have been
resolved; and monthly snapshots of Wikipedia’s graph
in the format of edge lists.

The code is written in Python to work on Spark. We
provide three useful libraries: the aforementioned
Wikipedia parser to extract the links, a module that
provides all the functions needed to process the
dataset and another one to interact with Snap.py to
compute relevant properties of the network. All the
code has been extensively commented as well as clear
README files have been produced, with the aim of
making our results easily reproducible. Additionally,
IPython notebooks show how some functions were
built, containing the values taken by intermediate
results.

A major part of the time and economical resources
have been spent on tuning Spark so as to require the
least amount of RAM allocated in order to successfully
process the data. We provide all the Bash scripts
tuned with these different parameters so that each
processing phase can be simply run without incurring
in any failures.

The processing pipeline has not always been as
described in Section 4 but it evolved during the
semester as different results appeared. The libraries
that we provide contain working functions even for
those approaches than we discarded. Among them,
the functions to create a DataFrame of deltas (on the
same line as the log approach presented in the related
work) and to create a Redirect DataFrame (though a
dictionary is already available).

We have also given some early results on the
evolution of Wikipedia’s network, showing how the
graph densifies over time and that a shrinking diameter
is expected to show up, similarly to the findings in [6].

There is still much work to do in this project and
there is plenty of interesting research questions to be
asked.

Regarding the data processing part, we would like
to add the position of each link in the text. Moreover,
it is to be investigated whether it is easy to read Spark

DataFrames in other platforms, especially in Hadoop.

Regarding the evolution of the properties of the
network, we still need to evaluate quantities like
the evolution of the diameter and of the density of
hyperlinks per article. Other interesting studies would
involve understanding how much time is needed by
an article to saturate its number of incoming links.

Finally, all the studies on navigation need to be
explored.

Now that the processed dataset is available, a lot of
fun awaits their users!
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A Working Environments

In this section, we give some tips and useful links to
run your code on the server and on the cluster.

A.1 Server

The dlab-server is a machine shared among all
the people at dlab. Table 2 in Section 3 gives the
specification of the machine. We only stress that
/dlabdata1/ is to be used only to store important
data that will otherwise require intensive, long
computations in order to obtain it. Moreover, being a
NFS, it is slower to access data stored there. Instead,
/scratch/ should be used whenever possible as it is
faster. However, data is not backed up and you may
incur the risk of losing it for any potential failure.

If you want to use IPython notebooks either
to run standard Python code or to open a Pys-
park shell as a notebook, have a look at the
jupyter_and_spark_config.txt file in the repository.
It also contains the instructions to download and install
Spark 1.6.3. The notebook will start at the server’s
address (iccluster111.iccluster.epfl.ch:PORT),
where PORT is the port number that you have chosen
while setting your Jupyter configurations. Make sure
that PORT is not a value in the reserved range (0,
1024). Hence, anyone connecting to that address could
access your notebooks. To avoid any inconvenience,
we suggest adding a password, as described in the
configuration file mentioned above.

Also, Anaconda3 is available on the server, but you
can also install Anaconda2 on your home directory. We
did so because the version of Python in Spark with
which the cluster operates is Python2.7 and hence we
found useful to have such installation. Moreover, also
Snap.py works on Python2.7. To install it, just follow
the instructions at [snap.py] but make sure that you
use the correct Python executable. For instance, if you
want to use the Python executable that is available
on the Anaconda2 distribution that you have installed
in path in the server, run a command similar to the
following one in the last step of your installation:

sudo /path/anaconda2/bin/python setup.py install

A.2 Cluster

The following URLs are useful while running Spark on
the cluster:

• iccluster075.iccluster.epfl.ch:8088/
cluster/scheduler: This gives the webpage
containing the information about resources usage.
You can find other interesting information by
following the links in the left box. In particular,

Nodes will give more information about the capac-
ity of each node in the cluster; while Applications
contains the list of all the applications that ran on
the cluster. This proves to be helpful when you
find out that your application has failed as you
might not be able to track the original error back
from the stack trace (especially if you run your
applications with tmux).

• 10.90.38.26:4040: This is the URL where
Spark’s UI interface is launched. Each running
job runs on a different port number, starting from
port 4040.

• install.iccluster.epfl.ch/
bigdataservices/: Using the cluster has
its costs. You can see the updated prices being ap-
plied at: https://icitdocs.epfl.ch/display/
clusterdocs/Big+Data+Platform This is the
web page that allows you to check how much you
are spending. Once you access that page, click
on the Login button and then choose your dlab
account when you can see the drop-down menu.
You might still not see any costs. If that is the
case, just open a ticket by sending an email to
support-icit@epfl.ch. Remember to logout
when you have finished checking and to select
dlab again while doing so. Otherwise, costs might
not be updated if you check later.

As usual, to access a remote machine, just use
ssh gaspar@address .
Additionally, it is possible to transfer data from the
HDFS in the cluster to /dlabdata1/ by connecting to
a specific machine in the cluster, issuing the following
commands:
ssh gaspar@iccluster050.iccluster.epfl.ch
hadoop fs -get HDFS/data/path /dlabdata1/path

To move data the other way around, instead:

ssh gaspar@iccluster050.iccluster.epfl.ch
hadoop fs -put /dlabdata1/path HDFS/data/path

B Datasets Processing

All the datasets mentioned in Section 4 can
be found both in the cluster and in the dlab-
server. The reference directory in the clus-
ter is hdfs:///user/bugliare/data/ , while
/scratch/bugliare/ is the one in the server. More-
over, a sample of roughly 50 revisions per dataset is
available in the data/ folder in the repository.

In this section, we report the amount of resources
used and the time needed along with the configurations
we set for each of the processing phases that run on
the cluster. Figure 9 summarizes the following results.

Starting from the original dataframe, we firstly
generate the so-called Links DataFrame. It is stored
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Figure 9: Time and cost of each processing phase.

Step Execution time RAM VCores

generate 0 28 min 322 GB 211
generate 1 55 min 322 GB 211
generate 2 44 min 322 GB 211
generate 3 56 min 322 GB 211
generate 4 36 min 322 GB 211
generate 5 1 hour 322 GB 211
generate 6 1 hour 322 GB 211
generate 7 1.8 hours 322 GB 211
generate 8 30 min 322 GB 211
generate 9 31 min 322 GB 211
combine 14 min 154 GB 211

Table 6: Resources requested to generate the Links DataFrame.

as “wikipedia-links” under the directories mentioned
above and its size is 251.7 GB. Table 6 shows the
resource breakdown to build it. The total time is of
8.7 hours and the cost is of CHF 2.43 for the RAM
and CHF 9.23 for the cores, for a total of CHF 11.66.

The next step is transforming this dataset in
the Resolved Links DataFrame. This is stored as
“wikipedia-resolved-links” and its size is of 295.5 GB.
Table 7 shows the resource breakdown to build it.
The total time is of 23.11 hours and the cost is of
CHF 15.32 for the RAM and CHF 12.32 for the cores,
for a total of CHF 27.64.

The final step in the general transformations is
the Normalized Links DataFrame. This is stored
as “wikipedia-normalized-links” and its size is of
254.3 GB. Table 8 shows the resource breakdown to
build it. The total time is of 20.72 hours and the cost
is of CHF 12.14 for the RAM and CHF 7.16 for the
cores, for a total of CHF 19.3.

The first project-related transformation is building
the Monthly Links DataFrame. This is stored as
“wikipedia-monthly-links” and its size is of 96.5 GB.
Table 9 shows the resource breakdown to build it.
The total time is of 11.61 hours and the cost is of
CHF 2.45 for the RAM and CHF 16.49 for the cores,
for a total of CHF 18.94.

Step Execution time RAM VCores

generate 1 6.7 min 807 GB 151
generate 2 7.2 min 807 GB 151
generate 3 7.5 min 807 GB 151
generate 4 7.7 min 807 GB 151
generate 5 7.4 min 807 GB 151
generate 6 7.3 min 807 GB 151
generate 7 13 min 807 GB 151
generate 8 15 min 807 GB 151
generate 9 14 min 807 GB 151
generate 10 20 min 807 GB 151
generate 11 23 min 807 GB 151
generate 12 34 min 807 GB 151
generate 13 36 min 1.24 TB 106
generate 14 32 min 807 GB 151
generate 15 33 min 807 GB 151
generate 16 33 min 1.03 TB 151
generate 17 40 min 1.03 TB 151
generate 18 43 min 1.37 TB 151
generate 19 1.2 hours 1.37 TB 151
generate 20 1 hour 1.37 TB 151
generate 21 55 min 1.37 TB 151
generate 22 44 min 1.37 TB 151
generate 23 55 min 1.37 TB 151
generate 24 1.7 hours 1.24 TB 106
generate 25 2.2 hours 1.24 TB 106
generate 26 1.3 hours 1.24 TB 106
generate 27 1.3 hours 1.24 TB 106
generate 28 1.1 hours 1.24 TB 106
generate 29 1.5 hours 1.24 TB 106
generate 30 1.5 hours 1.24 TB 106
generate 31 1.4 hours 1.54 TB 106
generate 32 1 hour 1.54 TB 106
combine 19 min 385 GB 106

Table 7: Resources requested to generate the Resolved Links
DataFrame.

Finally, the last transformation that we run on the
cluster consists of creating the edge lists. They are all
stored under “monthly-edges-lists” and their total size
is 89.4 GB. Table 10 shows the resource breakdown to
build it. The total time is of 34.9 hours and the cost
is of CHF 2.54 for the RAM and CHF 19.09 for the
cores, for a total of CHF 21.63.

C On Spark & Yarn

A very important remark is that you cannot work with
the entire dataset at once. In fact, even a count() op-
eration fails. The first idea behind the failure was that
the data was corrupted. However, when we loaded
data in batches of around 10, 000 parts each (for exam-
ple, part-r-0*), we could actually count the number
of entries in each batch. Moreover, the counting pro-
cess was successful even when concatenating several
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Step Execution time RAM VCores

generate 1 47 min 1015 GB 64
generate 2 36 min 1015 GB 64
generate 3 35 min 1015 GB 64
generate 4 34 min 1015 GB 64
generate 5 34 min 1015 GB 64
generate 6 35 min 1015 GB 64
generate 7 32 min 1.36 TB 64
generate 8 31 min 1.36 TB 64
generate 9 32 min 1.36 TB 64
generate 10 34 min 1.36 TB 64
generate 11 37 min 1.36 TB 64
generate 12 41 min 1.36 TB 64
generate 13 39 min 1.36 TB 64
generate 14 42 min 1.36 TB 64
generate 15 41 min 1.36 TB 64
generate 16 41 min 1.36 TB 64
generate 17 41 min 1.36 TB 64
generate 18 42 min 1.36 TB 64
generate 19 41 min 1.36 TB 64
generate 20 39 min 1.36 TB 64
generate 21 40 min 1.36 TB 64
generate 22 39 min 1.36 TB 64
generate 23 41 min 1.36 TB 64
generate 24 40 min 1.36 TB 64
generate 25 42 min 1.36 TB 64
generate 26 38 min 1.36 TB 64
generate 27 41 min 1.36 TB 64
generate 28 42 min 1.36 TB 64
generate 29 41 min 1.36 TB 64
generate 30 41 min 1.36 TB 64
generate 31 44 min 1.36 TB 64
generate 32 40 min 1.36 TB 64
combine 18 min 385 GB 106

Table 8: Resources requested to generate the Normalized Links
DataFrame.

batches: starting from part-r-1*, we recursively con-
catenated and tried counting part-r-i*, for 2 ≤ i ≤ 9.
The count operation failed when we concatenated
part-r-6*. So, roughly, only half of the dataset could
be used at once. The problem was then to be searched
in the Yarn configuration of the cluster. It could either
be a limitation in the (i) number of parts or in the (ii)
total size that can be used at once. We cannot modify
the setup of the cluster and the people managing the
IC cluster could not fix it either. Hence, we need to
process the data in batches.
Processing the data in batches is how we have pro-
ceeded throughout our development and, we think, it
is at the core of effectively processing big data.

Step Execution time RAM VCores

generate 1 41 min 217 GB 211
generate 2 41 min 217 GB 211
generate 3 41 min 217 GB 211
generate 4 40 min 217 GB 211
generate 5 42 min 217 GB 211
generate 6 45 min 217 GB 211
generate 7 46 min 217 GB 211
generate 8 47 min 217 GB 211
generate 9 47 min 217 GB 211
generate 10 45 min 217 GB 211
generate 11 44 min 217 GB 211
generate 12 44 min 217 GB 211
generate 13 45 min 217 GB 211
generate 14 43 min 217 GB 211
generate 15 45 min 217 GB 211
generate 16 37 min 217 GB 211
combine 3.9 min 385 GB 106

Table 9: Resources requested to generate the Monthly Links
DataFrame.

Step Execution time RAM VCores

generate 34.9 hours 367 GB 91

Table 10: Resources requested to generate the Edge Lists.
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