
Evaluating the evolution of
Wikipedia’s navigability

Project in communication systems II

June 12, 2017

Emanuele Bugliarello
emanuele.bugliarello@epfl.ch

(SC-MA4)

Towards

Motivation

● People are regularly faced with navigating information spaces
Information is usually spread over different interconnected sources

● This type of navigation can be mapped to a search in a graph
Nodes represent pieces of knowledge; edges indicate connections

● Lack of a global view of the underlying network
We only get access to local information

● Decentralized search in giant networks
People could easily get lost and we cannot rely on well-known results

2

Goals

● Study which properties of a network have the largest impact on
navigability
More links: more shortcuts; higher risk of users getting lost

● Infer a model to help people in exploratory searches
Information usually gathered from sources not known in advance

● Using Wikipedia as our validation domain
○ Rich knowledge database
○ Data of human navigation from Wikispeedia
○ Entire history of revisions of Wikipedia available

3

ToC

❖ Introduction
❖ Related Work
❖ System Overview
❖ Data, Data & Data
❖ Results
❖ Methodology
❖ On Spark & YARN
❖ Conclusion
❖ Future Work

4

ToC

❖ Introduction
❖ Related Work
❖ System Overview
❖ Data, Data & Data
❖ Results
❖ Methodology
❖ On Spark & YARN
❖ Conclusion
❖ Future Work

5

Related Work

● Data management systems to store historical graph data
○ B. Salzberg and V. Tsotras.

Comparison of access methods for time-evolving data.
ACM Computing Surveys, 1999.

● Graph properties evolution over time
○ J. Leskovec, J. Kleinberg, and C. Faloutsos.

Graphs over Time: Densification Laws, Shrinking Diameters and Possible Explanations.
ACM SIGKDD, 2005.

● Decentralized search in networks
○ R. West and J. Leskovec.

Human Wayfinding in Information Networks.
WWW, 2012.

○ R. West and J. Leskovec.
Automatic Versus Human Navigation in Information Networks.
ICWSM, 2012.

6

ToC

❖ Introduction
❖ Related Work
❖ System Overview
❖ Data, Data & Data
❖ Results
❖ Methodology
❖ On Spark & YARN
❖ Conclusion
❖ Future Work

7

System Overview

● dlab-server (or simply server)
iccluster111.iccluster.epfl.ch
Single Linux machine: 48 cores, 256 GB RAM
Data folder: /scratch/bugliare/

● cluster
hadoop.iccluster.epfl.ch
7 nodes: 266 VCores, 1.63 TB RAM in total
Data folder: hdfs:///user/bugliare/data/
Pay-per-use

● iccluster050.iccluster.epfl.ch
Machine to move data from cluster’s HDFS to server’s /dlabdata1/

8

ToC

❖ Introduction
❖ Related Work
❖ System Overview
❖ Data, Data & Data
❖ Results
❖ Methodology
❖ On Spark & YARN
❖ Conclusion
❖ Future Work

9

Overview

● Datasets are Spark DataFrames

○ Stored as Parquet files

○ Compressed with Snappy

● Two processing stages:

○ General Transformations

○ Project-related Transformations

10

Original Data

● Available at
hdfs:///datasets/wik
ipedia/en-oct-2016

● Cannot work with the
entire dataset at once

11

redirect: UTF-8 null

ns: UTF-8 4

title: UTF-8 Wikipedia:Bot req...

id: UTF-8 912023

sha1: UTF-8 4qpzrtsom7ls28291...

revision_id: UTF-8 336934282

parentid: UTF-8 336930575

model: UTF-8 wikitext

text: UTF-8 {{Wikipedia progr...

text_xmlspace: UTF-8 preserve

ip: UTF-8 null

timestamp: int96 2010-01-10 05:06:...

Extracting hyperlinks from text

● Standard hyperlinks

● Hatnotes

12

Extracting hyperlinks from text: standard links

● [[Texas]] → https://en.wikipedia.org/wiki/Texas

... claimed the territory of Texas in the 18th century as ...

● [[Texas|Lone Star State]]→ https://en.wikipedia.org/wiki/Texas

... claimed the territory of Lone Star State in the 18th century as ...

13

https://en.wikipedia.org/wiki/Texas
https://en.wikipedia.org/wiki/Texas
https://en.wikipedia.org/wiki/Texas
https://en.wikipedia.org/wiki/Texas

Extracting hyperlinks from text: hatnotes (1)

● “Main article: . . . ”
● “For more details on . . . , see . . . ”
● “See also . . .”
● “Further information: . . . ”
● “This page is about . . . For other uses . . . ”
● “This page is about . . . It is not to be confused with . . . ”
● “For . . . , see . . . ”
● “For other uses, see . . . ”
● “. . . redirects here. For other uses, see . . . ”
● “Not to be confused with . . . ”
● “. . . Not to be confused with . . . ”

14

Extracting hyperlinks from text: hatnotes (2)

Example (About hatnote)
“This page is about ... For other uses ...” inside Wikipedia page PAGETITLE

● {{About|USE1}}

This page is about USE1. For other uses, see PAGETITLE (disambiguation)

● {{About|USE1|USE2|PAGE2{{!}}PAGE2TITLE|and|PAGE3#SUBSECTI
ON|other uses}}

This page is about USE1. For USE2, see PAGE2TITLE and PAGE3. For
other uses, see PAGETITLE (disambiguation)

15

General Transformations

16

DataFrame of Wikipedia revisions.
For each revision, the whole text
(wiki-markup) is stored.

DataFrame of links. It contains two columns,
one for standard hyperlinks and one for
hatnotes. A column storing the number
characters is also added.

DataFrame with normalized titles and
resolved redirects pages, substituting each of
their occurrences with the corresponding
target pages.

DataFrame with columns containing integer
values casted to integer and links split into
“reachable” and “unreachable” columns.

Original
DataFrame

Links
DataFrame

Resolved Links
DataFrame

00

01

02

03

Links DataFrame

● Keep a counter of
each link frequency

● Separate standard
hyperlinks to hatnotes

● Extract titles in the
redirect column:
{@title=Tautology}
→ Tautology

● Add length column:
number of characters
in the text of each
revision

17

id: UTF-8 912023

title: UTF-8 Wikipedia:Bot requests

timestamp: int96 2007-01-26 16:54:18

standard_outlinks: array(array(UTF-8)) [[Skynet, 1], ...]

hatnotes_outlinks: array(array(UTF-8)) []

length: int 29155

redirect: UTF-8 null

revision_id: UTF-8 103395195

ip: UTF-8 null

parentid: UTF-8 103389117

ns: UTF-8 4

Resolved Links DataFrame

A redirect is a page which automatically sends visitors to another page
Example:
https://en.wikipedia.org/wiki/UK → https://en.wikipedia.org/wiki/United_Kingdom

● Redirect information readily available in the redirect column

● A page might change target over time → intensive replacing task:
For each revision in the DataFrame, determine its view of Wikipedia in
terms of redirects

● Normalize titles:
○ /subpageTitle → hostPageTitle/subpageTitle
○ Replace white spaces by underscores (_)
○ Capitalize first letter

18

https://en.wikipedia.org/wiki/UK
https://en.wikipedia.org/wiki/United_Kingdom
https://en.wikipedia.org/wiki/UK

Normalized Links DataFrame (1)

● Cast id, revision_id, parentid and ns columns to integer

● Split links in the standard and hatnotes lists into two lists each:
“reachable” and “unreachable” using the timestamps of first revisions

○ Discard links pointing to non-existing pages (e.g., due to typos)

○ Discard links to pages not existing at the moment the revision was
created (red links)

19

Normalized Links DataFrame (2)

20

id: int 24657

title: UTF-8 Standard_Chinese

timestamp: int96 2016-09-17 02:58:55

standard_outlinks: array(array(UTF-8)) [[Compound_(linguistics), 1], ...]

hatnotes_outlinks: array(array(UTF-8)) [[Standard_Chinese_(disambiguation), 1]]

standard_outlinks_failed: array(array(UTF-8)) [[Wikt:mingzi, 1], [Wikt:goodbye, 2], ...]

hatnotes_outlinks_failed: array(array(UTF-8)) []

length: int 49416

redirect: UTF-8 null

revision_id: int 739788881

ip: UTF-8 null

parentid: int 739788073

ns: int 0

Testing

Inspect an article with corner cases:

● Still has red links as of the test date
→ Assert whether they have been placed in any of the _failed lists

● Contains links with non-ASCII characters
→ Make sure they have been preserved along the pipeline

● Contains redirects among its links
→ Assert whether they have been correctly resolved

Winning article: “Standard Chinese” (revision 739788881, edited on Sep 17, 2016)
Result: all tests passed

Sanity check: Number of entries in the Normalized Links DataFrame is
equal to the number of entries in the Original DataFrame.

21

Project-related Transformations

For each article, take the last
revision in each month (if any)

Monthly Links
DataFrame

Edge lists of monthly
snapshots of the whole

network

Monthly Snapshots
Edge Lists

Edge lists of monthly
differences

Monthly Edge ListsNormalized Links
DataFrame

22

Monthly Links DataFrame

● For each month, keep the revision with the latest timestamp for any of
the articles modified in that month
→ At most one entry per month for each article

● Focus only on articles in the main namespace (0)
→ Entries still have links to pages in other namespaces!

23

Collisions & Other Issues

● Needed mappings: id → title, title → id
a. Create a dictionary having ids as keys and titles as values
b. Invert keys and values and create a dictionary mapping titles to ids

● 123 titles that have each 2 ids associated
○ 105 single-letter Unicode character pairs collide due to capitalization

Example: ⓩ → Ⓩ
Not a big issue: Most of them redirect to their “normal” representation

○ 18 id pairs collide because their title in the Original DataFrame is wrong
Example:
- Claim: 5702430 → Akalgarh, India
- Truth: 5702430 → Akalgarh, Ludhiana
 Incorrect Original DataFrame

● Manually map each id to its correct title using Wikipedia’s query API
→ Ensure that the title to id dictionary has the correct mapping

24

Monthly Edge Lists

● An edge list file contains an edge per line as a source-target ids pair

○ Repeat an edge as many times as its frequency in the original article

● Build independent monthly graphs as edge lists

○ Edge lists only contain edges whose sources have been modified in a
given month

○ Only use non-failing links

○ Map titles to ids using dictionary with keys in namespace 0 only
→ Discard links to articles not in the main namespace (O(1))

25

Monthly Snapshots Edge Lists

Build edge lists representing a snapshot of Wikipedia for a given month

● Start from the first month in the dataset

● Incrementally build dictionary of:
article id → latest list of outgoing links

● Purge sources whose last revision in the Original DataFrame is
at least one year older than the current month
→ This is used to infer the missing information of removed articles
→ Reasonable results:
○ Number of articles in namespace 0 in the last revision: 4,947,285
○ Real number of pages in Wikipedia: 5,420,384

26

Resources on the cluster

● Pipeline running time: 8.70 + 23.11 + 20.72 + 11.61 + 34.90 = 99.04 hours
● Pipeline cost: 11.66 + 27.64 + 19.30 + 18.94 + 21.63 = 99.17 CHF

27

Figure 1: Time and cost of each processing phase

ToC

❖ Introduction
❖ Related Work
❖ System Overview
❖ Data, Data & Data
❖ Results
❖ Methodology
❖ On Spark & YARN
❖ Conclusion
❖ Future Work

28

Last snapshot: preprocessing definition

● Self loops in the network despite removing them during hyperlinks
extraction (due to redirects)
→ Remove them

● Many 0 out-degree nodes
→ Remove them

29

Last snapshot: degree distributions

● Do the degrees follow
a power law
distribution?

● If yes, how do their
parameters evolve
over time?

30

Figure 2: Outdegree (top) and Indegree (bottom)
 distributions in the last snapshot of Wikipedia

● Before 2012 Wikipedia's growth approximately followed a Gompertz growth
model:

○ a = 4378449
○ b = −15.42677
○ c = −0.384124
○ t is the time in years

since 1/1/2000
(so 1/1/2010 is t=10.00)

Wikipedia over time: nodes evolution

31

Figure 3: Evolution of the number of nodes in
 Wikipedia’s network.

Wikipedia over time: edges & graph density
evolution
● Wikipedia’s graph becomes

denser over time

32

Figure 4: Evolution of the number of edges
 (top) and graph density (bottom) in
 Wikipedia’s network.

Wikipedia over time: median degrees evolution

33

Figure 5: Evolution of the median degrees in Wikipedia’s network.

Wikipedia over time: giant connected component evolution

● Giant component size increases over time

34

Figure 6: Evolution of the size of the giant component in absolute
 values (left) and as a percentage of the total number of
 nodes in each month (right).

ToC

❖ Introduction
❖ Related Work
❖ System Overview
❖ Data, Data & Data
❖ Results
❖ Methodology
❖ On Spark & YARN
❖ Conclusion
❖ Future Work

35

Methodology (1)

● Python scripts to reproduce everything we report on
IPython notebooks to show results and intermediate steps

● 3 widely commented libraries [> 2500 lines]
○ Wikipedia parsing
○ Data processing
○ Network analysis (interface to Snap.py)

● GitHub repository with descriptions for each piece of code

● Report with meticulously described processing phases

36

Methodology (2)

● Bash scripts to launch Spark jobs tuned to ask for minimal resources

37

BIG DATA
BIG TIME BIG MONEY

ToC

❖ Introduction
❖ Related Work
❖ System Overview
❖ Data, Data & Data
❖ Results
❖ Methodology
❖ On Spark & YARN
❖ Conclusion
❖ Future Work

38

Spark on YARN: overview

● --num-executors: number of executors requested
● --executor-cores: number of executor cores requested
● --executor-memory: executor JVM heap size
● --conf spark.yarn.executor.memoryOverhead: determines full memory request

to YARN for each executor. Default: max(384, 0.07*spark.executor.memory)
● --driver-memory and --driver-cores: resources for the application master

● Python is all off-heap memory and does not use the RAM reserved for heap!

39

Figure TODO: Spark architecture and container memory layout

Spark on YARN: errors & solutions

Memory resources are split among all the cores of each executor

● … Consider boosting spark.yarn.executor.memoryOverhead.
→ --conf spark.yarn.executor.memoryOverhead=<N_MB>

● java.lang.OutOfMemoryError: Java heap space
java.lang.OutOfMemoryError: GC overhead limit exceeded
→ boost driver-memory and/or executor-memory

● java.lang.NullPointerException
→ Error in the cluster:
○ Service down in one node
○ No storage left in output directory

● Serialized results ... is bigger than spark.driver.maxResultSize
→ --conf spark.driver.maxResultSize=<N>G

● If you want to share a large dictionary dict_, use: dict_bc=sc.broadcast(dict_)
And access it as: dict_bc.value

40

ToC

❖ Introduction
❖ Related Work
❖ System Overview
❖ Data, Data & Data
❖ Results
❖ Methodology
❖ On Spark & YARN
❖ Conclusion
❖ Future Work

41

Conclusion

● Generated datasets of resolved & reachable links from Wikipedia
revisions despite slow start
○ General transformations applied without any loss of granularity

● Extensively commented code and README files
→ Making our results easily reproducible

● Scripts to avoid spending time and money on tuning Spark

● Early results on Wikipedia’s network evolution over time
○ Graph densifies over time

42

ToC

❖ Introduction
❖ Related Work
❖ System Overview
❖ Data, Data & Data
❖ Results
❖ Methodology
❖ On Spark & YARN
❖ Conclusion
❖ Future Work

43

Future Work

● Data processing
○ Investigate 0 out-degree nodes
○ Add the position of each link in the text
○ Read Spark DataFrame in Parquet files into other platforms

(Hadoop)

● Graph’s properties evolution
○ Diameter
○ Link density per article
○ Indegree saturation time

● Navigability studies

44

Thank you

