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But how multimodal are they really?
e Downstream performance might be misleading

e Previous work: Cao+(2020) Li+(2020) Parcalabescu+(2021)

 Ours: An easy way of assessing cross-modal influence within these models
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Cross-Modal Input Ablation

How does a missing modality affect model predictions?
Based on the same objectives used during pretraining: what the model is trained to do

e.g. Masked Language Modelling
e How much does the model rely on vision to predict a masked token?
1. With vision inputs
2. Without vision inputs

Falsifiable hypothesis
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Ablating Vision-for-Language

How much does the model rely on visual inputs for text predictions?

e No ablation (None)
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Ablating Language-for-Vision
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Experimental Setup

Data
e Flickr30k Entities (validation)

m Human-annotated phrase-image alignments

A man with pierced ears is wearing glasses and an orange hat.
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Experimental Setup

Data
e Flickr30k Entities (validation)

m Human-annotated phrase-image alignments

Models
e 5V&L BERTs from VOLTA (Bugliarello+, 2021)

® ViSion inputs from FaSter R-CNN (Anderson+, 201 8) A man with pierced ears is wearing glasses and an orange hat.

e Prediction tasks
m Vision-for-language: MLM
m Language-for-vision: MRC-KL
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Vision-for-Language Ablation
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Vision-for-Language Ablation

Performance degrades (increased MLM perplexity) as visual inputs are removed
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Language-for-Vision Ablation
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Language-for-Vision Ablation
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Language-for-Vision Ablation

Performance barely degrades (increased MRC KL) as textual inputs are removed
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Why No Language-for-Vision?
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The Devil's in the Data

MRC is based on silver data
e Faster R-CNN object category predictions

 They often do not match the text description

Analysis by category:

® eopie = man, woman, ...
people = { }
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The Devil's in the Data

Error Distribution of Faster R-CNN by Category

MRC is based on silver data
e Faster R-CNN object category predictions

e They often do not match the text description

Analysis by category:

e people ={man, woman, ...}
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Error Distribution of Faster R-CNN by Category

MRC is based on silver data
e Faster R-CNN object category predictions

e They often do not match the text description

Analysis by category:
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The Devil's in the Data

MRC is based on silver data

Error Distribution of Faster R-CNN by Category
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