It's Easier to Translate *out of* English than *into* it: Measuring Neural Translation Difficulty by Cross-Mutual Information

ACL 2020

Emanuele Bugliarello, Sabrina J. Mielke, Antonios Anastasopoulos, Ryan Cotterell, Naoaki Okazaki

UNIVERSITY OF COPENHAGEN

 \sim

Jatrix Evaluation Matrix

Translation quality of best system for test set newstest2019 \bigcirc Translations Resources

Download Info Account

✓ using metric BLEU-cased

2

39.9

BLEU is a precision-based metric

BLEU is a precision-based metric

1. BLEU depends on *tokenization* and the *notion of "word"*!

BLEU is a precision-based metric

1. BLEU depends on *tokenization* and the *notion of "word"*!

Example:

"I will have been programming" English "Programlayacağım" Turkish

- BLEU is a precision-based metric
- 1. BLEU depends on *tokenization* and the *notion of "word"*!

Example:

"I will have been programming" English "Programlayacağım" Turkish

→ More partial credit for English!

BLEU is a precision-based metric

1. BLEU depends on *tokenization* and the *notion of "word"*!

Example:

"I will have been programming" English "Programlayacağım" Turkish

→ More partial credit for English!

Remedy: Look at the likelihood

BLEU is a precision-based metric

1. BLEU depends on *tokenization* and the *notion of "word"*!

Example:

"I will have been programming" English "Programlayacağım" Turkish

→ More partial credit for English!

Remedy: Look at the likelihood

2. We are still measuring: difficulty of translation and generation

Entropy: $H(T) = \mathbb{E}_{t \sim p(T)}[-\log_2(p(t))]$ uncertainty $H(T \mid S) = \mathbb{E}_{(s,t) \sim p(S,T)}[-\log_2(p(t \mid s))]$

Entropy: $H(T) = \mathbb{E}_{t \sim p(T)}[-\log_2(p(t))]$ uncertainty $H(T \mid S) = \mathbb{E}_{(s,t) \sim p(S,T)}[-\log_2(p(t \mid s))]$

H(T)

uncertainty about T a priori

Entropy: $H(T) = \mathbb{E}_{t \sim p(T)}[-\log_2(p(t))]$ uncertainty $H(T \mid S) = \mathbb{E}_{(s,t) \sim p(S,T)}[-\log_2(p(t \mid s))]$

Entropy: $H(T) = \mathbb{E}_{t \sim p(T)}[-\log_2(p(t))]$ uncertainty $H(T \mid S) = \mathbb{E}_{(s,t) \sim p(S,T)}[-\log_2(p(t \mid s))]$

Entropy: $H(T) = \mathbb{E}_{t \sim p(T)}[-\log_2(p(t))]$ uncertainty $H(T|S) = \mathbb{E}_{(s,t) \sim p(S,T)}[-\log_2(p(t|s))]$ $\underbrace{MI(S; T)}_{\textbf{mutual information}} = \underbrace{H(T)}_{uncertainty about T} - \underbrace{H(T|S)}_{uncertainty about T} \underbrace{H(T|S)}_{a \ priori} = \underbrace{H(T)}_{a \ priori} - \underbrace{H(T|S)}_{a \ fter \ knowing S}$

Entropy: $H(T) = \mathbb{E}_{t \sim p(T)}[-\log_2(p(t))]$ uncertainty $H(T|S) = \mathbb{E}_{(s,t) \sim p(S,T)}[-\log_2(p(t|s))]$ MI(S;T) = H(T) - H(T|S)mutual information between S and T a priori much knowing S reduced uncertainty about Tmuch knowing S reduced uncertainty about T

Entropy: $H(T) = \mathbb{E}_{t \sim p(T)}[-\log_2(p(t))]$ uncertainty $H(T|S) = \mathbb{E}_{(s,t) \sim p(S,T)}[-\log_2(p(t|s))]$ $\underbrace{MI(S;T)}_{\textbf{mutual information}} = \underbrace{H(T)}_{uncertainty about T} - \underbrace{H(T|S)}_{uncertainty about T}_{after knowing S}$ uncertainty about T how much knowing S reduced uncertainty about T

Example: en-zh

Entropy: $H(T) = \mathbb{E}_{t \sim p(T)}[-\log_2(p(t))]$ uncertainty $H(T | S) = \mathbb{E}_{(s,t) \sim p(S,T)}[-\log_2(p(t | s))]$ MI(S; T) = H(T) - H(T | S) MI(S; T) = H(T) - H(T | S) MI(T) = H(T) - H(T) - H(T | S) MI(T) = H(T) - H(T) - H(T | S) MI(T) = H(T) - H(T) - H(T | S) MI(T) = H(T) - H(T) - H(T | S) MI(T) = H(T) - H(T) - H(T | S) MI(T) = H(T) - H(T) - H(T | S) MI(T) = H(T) - H(T) - H(T) - H(T) MI(T) = H(T) - H(T) - H(T) - H(T) - H(T) - H(T) MI(T) = H(T) - H(T)

Example: en-zh

H(谢谢)

uncertainty about "谢谢"

Entropy: $H(T) = \mathbb{E}_{t \sim p(T)}[-\log_2(p(t))]$ uncertainty $H(T|S) = \mathbb{E}_{(s,t) \sim p(S,T)}[-\log_2(p(t|s))]$ MI(S;T) = H(T) - H(T|S) MI(S;T) = H(T) - H(T|S) MI(T|S) = H(T) - H(T) MI(T|S) = H(T) - H(T|S) MI(T|S) = H(T) - H(T|S) MI(T|S) = H(T) - H(T) MI(T|S) = H(T) MI(T|S) = H(T) - H(T) MI(T

Example: en-zh

Entropy: $H(T) = \mathbb{E}_{t \sim p(T)}[-\log_2(p(t))]$ uncertainty $H(T|S) = \mathbb{E}_{(s,t) \sim p(S,T)}[-\log_2(p(t|s))]$ MI(S; T) = H(T) - H(T|S) MI(S; T) = H(T) - H(T|S) MI(T|S) = H(T) MI(T|S) = H(T) - H(T|S) MI(T|S) = H(T) MI(T|S) = H(T) - H(T|S) MI(T|S) = H(T) MI(T

H(谢谢) H(谢谢 | Thanks) MI(Thanks;谢谢)

uncertainty about "谢谢"

uncertainty about "谢谢" after knowing its translation

how much easier it has become to predict "谢谢"

Entropy: $H(T) = \mathbb{E}_{t \sim p(T)}[-\log_2(p(t))]$ uncertainty $H(T | S) = \mathbb{E}_{(s,t) \sim p(S,T)}[-\log_2(p(t | s))]$

$$MI(S;T) =$$

mutual information between *S* and *T*

uncertainty about T a priori

Η

uncertainty about T after knowing S

- H(T | S)

how much knowing S reduced uncertainty about T

Entropy: $H(T) = \mathbb{E}_{t \sim p(T)}[-\log_2(p(t))]$ uncertainty $H(T \mid S) = \mathbb{E}_{(s,t) \sim p(S,T)}[-\log_2(p(t \mid s))]$

Cross-Entropy: $H_q(T) = \mathbb{E}_{t \sim p(T)}[-\log_2(q(t))]$ how surprised is model q in reality p? $H_q(T \mid S) = \mathbb{E}_{(s,t) \sim p(S,T)}[-\log_2(q(t \mid s))]$

Entropy: $H(T) = \mathbb{E}_{t \sim p(T)}[-\log_2(p(t))]$ uncertainty $H(T \mid S) = \mathbb{E}_{(s,t) \sim p(S,T)}[-\log_2(p(t \mid s))]$

Cross-Entropy: $H_q(T) = \mathbb{E}_{t \sim p(T)}[-\log_2(q(t))]$ how surprised is model q in reality p? $H_q(T \mid S) = \mathbb{E}_{(s,t) \sim p(S,T)}[-\log_2(q(t \mid s))]$

 $\text{XMI}(S \rightarrow T) := H_{q_{LM}}(T) - H_{q_{MT}}(T \mid S)$

Entropy: $H(T) = \mathbb{E}_{t \sim p(T)}[-\log_2(p(t))]$ uncertainty $H(T \mid S) = \mathbb{E}_{(s,t) \sim p(S,T)}[-\log_2(p(t \mid s))]$

Cross-Entropy: $H_q(T) = \mathbb{E}_{t \sim p(T)}[-\log_2(q(t))]$ how surprised is model q in reality p? $H_q(T \mid S) = \mathbb{E}_{(s,t) \sim p(S,T)}[-\log_2(q(t \mid s))]$

 $\text{XMI}(S \rightarrow T) := H_{q_{LM}}(T) - H_{q_{MT}}(T \mid S)$

Entropy: $H(T) = \mathbb{E}_{t \sim p(T)}[-\log_2(p(t))]$ uncertainty $H(T \mid S) = \mathbb{E}_{(s,t) \sim p(S,T)}[-\log_2(p(t \mid s))]$

Cross-Entropy: $H_q(T) = \mathbb{E}_{t \sim p(T)}[-\log_2(q(t))]$ how surprised is model q in reality p? $H_q(T \mid S) = \mathbb{E}_{(s,t) \sim p(S,T)}[-\log_2(q(t \mid s))]$

$$XMI(S \to T) := H_{q_{LM}}(T) - H_{q_{MT}}(T \mid S)$$

Setup

- Data: Fully 21-parallel subset of Europarl
- Models:
 - 20 [\rightarrow en] Transformers
 - 20 [en \rightarrow] Transformers

Setup

- Data: Fully 21-parallel subset of Europarl
- Models:
 - 20 [\rightarrow en] Transformers
 - 20 [en \rightarrow] Transformers

Results

For fixed target, BLEU and XMI correlate well!

Setup

- Data: Fully 21-parallel subset of Europarl
- Models:
 - 20 [\rightarrow en] Transformers
 - 20 [en \rightarrow] Transformers

Results

- For fixed target, BLEU and XMI correlate well!
- Check our paper for more correlations

It's Easier to Translate *out of* English than *into* it!

It's Easier to Translate *out of* English than *into* it!

It's Easier to Translate *out of* English than *into* it!

Correlations with XMI?

The usual: type-token ratio... but on the source side!

Spearman's ρ	Metric	en	$en \rightarrow \bigcirc$	both
Mielke et al. (2019)	MCC _{src}	nope	nope	maybe?
	MCC_{tgt}	nope	nope	maybe?
	ADL_{src}	nope	nope	nope
	ADL_{tgt}	nope	nope	maybe?
	HPE-mean _{src}	nope	nope	maybe?
	HPE-mean _{tgt}	nope	nope	maybe?
Lin et al. (2019)	genetic	nope	nope	nope
	syntactic	nope	nope	nope
	featural	nope	nope	nope
	phonological	nope	nope	nope
	inventory	nope	nope	nope
	geographic	nope	nope	nope
Lin et al. (2019)	word number ratio	maybe?	nope	maybe?
	TTR _{src}	maybe?	_	-0.51
	TTR _{tgt}	-	nope	maybe?
	$d_{ m TTR}$	maybe?	nope	-0.47
	word overlap ratio	nope	nope	nope

Cross-mutual information (XMI)

- Cross-mutual information (XMI)
 - A metric for translation difficulties between *any* two directions

- Cross-mutual information (XMI)
 - A metric for translation difficulties between *any* two directions
- No linguistic correlations, but TTR... again

- Cross-mutual information (XMI)
 - A metric for translation difficulties between *any* two directions
- No linguistic correlations, but TTR... again
 - Let's scale this up and evaluate more pairs!

- Cross-mutual information (XMI)
 - A metric for translation difficulties between *any* two directions
- No linguistic correlations, but TTR... again
 - Let's scale this up and evaluate more pairs!
 - Let's build better models!

- Cross-mutual information (XMI)
 - A metric for translation difficulties between *any* two directions
- No linguistic correlations, but TTR... again
 - Let's scale this up and evaluate more pairs!
 - Let's build better models!

Code available online at https://github.com/e-bug/nmt-difficulty

ACL 2020 9