It’s Easier to Translate out of English than into it: Measuring Neural Translation Difficulty by Cross-Mutual Information

ACL 2020

Emanuele Bugliarello, Sabrina J. Mielke, Antonios Anastasopoulos, Ryan Cotterell, Naoaki Okazaki
Is **fi-en** easier than **en-fi**?
Is **fi-en** easier than **en-fi**?

We can’t tell based on BLEU!
BLEU’s shortcomings for cross-linguistic comparisons
BLEU’s shortcomings for cross-linguistic comparisons

BLEU is a precision-based metric
BLEU’s shortcomings for cross-linguistic comparisons

BLEU is a precision-based metric

1. BLEU depends on *tokenization* and the *notion of “word”*!
BLEU’s shortcomings for cross-linguistic comparisons

BLEU is a precision-based metric

1. BLEU depends on tokenization and the notion of “word”!

 Example:
 “I will have been programming” English
 “Programlayacağım” Turkish
BLEU’s shortcomings for cross-linguistic comparisons

BLEU is a precision-based metric

1. BLEU depends on *tokenization* and the *notion of “word”*

 Example:

 “I will have been programming” English
 “Programlayacağım” Turkish

 ➞ More partial credit for English!
BLEU’s shortcomings for cross-linguistic comparisons

BLEU is a precision-based metric

1. BLEU depends on *tokenization* and the *notion of “word”*

 Example:

 “I will have been programming”
 “Programlayacağım”

 → More partial credit for English!

 Remedy: Look at the likelihood
BLEU’s shortcomings for cross-linguistic comparisons

BLEU is a precision-based metric

1. BLEU depends on tokenization and the notion of “word”!

 Example:

 “I will have been programming” English
 “Programlayacağım” Turkish

 → More partial credit for English!

 Remedy: Look at the likelihood

2. We are still measuring: difficulty of translation and generation
Mutual Information expresses the act of translation

Entropy:

\[
H(T) = \mathbb{E}_{t \sim p(T)}[-\log_2(p(t))] \quad \text{uncertainty}
\]

\[
H(T|S) = \mathbb{E}_{(s,t) \sim p(S,T)}[-\log_2(p(t|s))]
\]
Mutual Information expresses the act of translation

Entropy: $H(T) = \mathbb{E}_{t \sim p(T)}[-\log_2(p(t))]$ uncertainty

$H(T | S) = \mathbb{E}_{(s,t) \sim p(S,T)}[-\log_2(p(t | s))]$

$H(T)$

uncertainty about T

a priori
Mutual Information expresses the act of translation

Entropy:

\[H(T) = \mathbb{E}_{t \sim p(T)}[-\log_2(p(t))] \]

uncertainty about \(T \)

\[H(T \mid S) = \mathbb{E}_{(s,t) \sim p(S,T)}[-\log_2(p(t \mid s))] \]

uncertainty about \(T \) after knowing \(S \)
Mutual Information expresses the act of translation

\[H(T) = \mathbb{E}_{t \sim p(T)}[-\log_2(p(t))] \]

\[H(T | S) = \mathbb{E}_{(s,t) \sim p(S,T)}[-\log_2(p(t | s))] \]

\[H(T) - H(T | S) \]

- uncertainty about \(T \)

- a priori
- after knowing \(S \)

how much knowing \(S \) reduced uncertainty about \(T \)
Mutual Information expresses the act of translation

Entropy:

\[H(T) = \mathbb{E}_{t \sim p(T)}[-\log_2(p(t))] \quad \text{uncertainty about } T \]

\[H(T | S) = \mathbb{E}_{(s, t) \sim p(S, T)}[-\log_2(p(t | s))] \]

\[
\text{MI}(S; T) = H(T) - H(T | S)
\]

- **Mutual Information** between \(S \) and \(T \)
- uncertainty about \(T \) *a priori*
- uncertainty about \(T \) *after knowing \(S \)*
- how much knowing \(S \) reduced uncertainty about \(T \)
Mutual Information expresses the act of translation

Mutual Information: $\text{MI}(S; T) = \text{H}(T) - \text{H}(T ∣ S)$

Entropy: $H(T) = \mathbb{E}_{t ∼ p(T)}[−\log_2(p(t))]$
$H(T ∣ S) = \mathbb{E}_{(s,t) ∼ p(S,T)}[−\log_2(p(t ∣ s))]$

- Mutual Information between S and T
- Uncertainty about T
 - a priori
 - after knowing S
- How much knowing S reduced uncertainty about T

Symmetric! assuming all entropies w.r.t. same joint $p(S, T)$
Mutual Information expresses the *act of translation*

Entropy:
\[
H(T) = \mathbb{E}_{t \sim p(T)}[-\log_2(p(t))] \quad \text{uncertainty about } T
\]

\[
H(T | S) = \mathbb{E}_{(s,t) \sim p(S,T)}[-\log_2(p(t | s))] \quad \text{uncertainty about } T \text{ after knowing } S
\]

Mutual Information (MI):
\[
\text{MI}(S; T) = H(T) - H(T | S)
\]

- **Mutual Information**
 - between S and T
- **Entropy of T**
 - *a priori* uncertainty about T
- **Conditional Entropy $H(T | S)$**
 - *after knowing S* uncertainty about T

Example: en-zh
Mutual Information expresses the act of translation

Entropy:

\[H(T) = \mathbb{E}_{t \sim p(T)}[-\log_2(p(t))] \]

\[H(T | S) = \mathbb{E}_{(s,t) \sim p(S,T)}[-\log_2(p(t | s))] \]

\[
\text{MI}(S; T) = \underbrace{H(T)}_{\text{uncertainty about } T \text{ } a \text{ priori}} - \underbrace{H(T | S)}_{\text{uncertainty about } T \text{ after knowing } S}
\]

Mutual Information

between \(S \) and \(T \)

\(\text{how much knowing } S \text{ reduced uncertainty about } T \)

Example: en-zh

\[H(谢谢) \]

uncertainty about “谢谢”

symmetric!

assuming all entropies w.r.t. same joint \(p(S, T) \)
Mutual Information expresses the act of translation

Entropy:
\[
H(T) = \mathbb{E}_{t \sim p(T)}[- \log_2(p(t))] \quad \text{uncertainty}
\]
\[
H(T \mid S) = \mathbb{E}_{(s,t) \sim p(S,T)}[- \log_2(p(t \mid s))] \quad \text{after knowing } S
\]

\[
\text{MI}(S; T) = H(T) - H(T \mid S) \quad \text{symmetric! assuming all entropies w.r.t. same joint } p(S,T)
\]

- **mutual information** between \(S \) and \(T \)
- uncertainty about \(T \) \textit{a priori}
- uncertainty about \(T \) \textit{after knowing } \(S \)
- how much knowing \(S \) reduced uncertainty about \(T \)

Example: en-zh

- \(H(谢谢) \)
- \(H(谢谢 \mid \text{Thanks}) \)

uncertainty about “谢谢”

uncertainty about “谢谢” after knowing its translation
Mutual Information expresses the act of translation

Entropy: $H(T) = \mathbb{E}_{t \sim p(T)}[-\log_2(p(t))]$ uncertainty

$H(T \mid S) = \mathbb{E}_{(s,t) \sim p(S,T)}[-\log_2(p(t \mid s))]$

$\text{MI}(S; T) = H(T) - H(T \mid S)$

Mutual information between S and T

- uncertainty about T a priori
- uncertainty about T after knowing S

how much knowing S reduced uncertainty about T

Example: en-zh

$H(谢谢)$

uncertainty about “谢谢”

$H(谢谢 \mid \text{Thanks})$

uncertainty about “谢谢” after knowing its translation

$\text{MI}(\text{Thanks};谢谢)$

how much easier it has become to predict “谢谢”
Cross-Mutual Information measures models’ performance on the act of translation

Entropy: $H(T) = \mathbb{E}_{t \sim p(T)}[-\log_2(p(t))]$ uncertainty

$H(T|S) = \mathbb{E}_{(s,t) \sim p(S,T)}[-\log_2(p(t|s))]$

$\text{MI}(S; T) = H(T) - H(T|S)$

- $H(T)$: uncertainty about T a priori
- $H(T|S)$: uncertainty about T after knowing S
- $\text{MI}(S; T)$: mutual information between S and T
- how much knowing S reduced uncertainty about T
Cross-Mutual Information measures models’ performance on the act of translation

Entropy:
- $H(T) = \mathbb{E}_{t \sim p(T)}[-\log_2(p(t))]$ uncertainty
- $H(T \mid S) = \mathbb{E}_{(s,t) \sim p(S,T)}[-\log_2(p(t \mid s))]$

MI(S; T) = $H(T) - H(T \mid S)$

- **Mutual information** between S and T
- **Uncertainty about T a priori**
- **Uncertainty about T after knowing S**
- **How much knowing S reduced uncertainty about T**

Cross-Entropy:
- $H_q(T) = \mathbb{E}_{t \sim p(T)}[-\log_2(q(t))]$ how surprised is model q in reality p?
- $H_q(T \mid S) = \mathbb{E}_{(s,t) \sim p(S,T)}[-\log_2(q(t \mid s))]$
Cross-Mutual Information measures models’ performance on the act of translation

Entropy: $H(T) = \mathbb{E}_{t \sim p(T)}[-\log_2(p(t))]$ uncertainty

$H(T \mid S) = \mathbb{E}_{(s,t) \sim p(S,T)}[-\log_2(p(t \mid s))]$

MI($S; T$) = $H(T) - H(T \mid S)$

- mutual information between S and T
- uncertainty about T a priori
- uncertainty about T after knowing S
- how much knowing S reduced uncertainty about T

Cross-Entropy: $H_q(T) = \mathbb{E}_{t \sim p(T)}[-\log_2(q(t))]$ how surprised is model q in reality p?

$H_q(T \mid S) = \mathbb{E}_{(s,t) \sim p(S,T)}[-\log_2(q(t \mid s))]$

XMI($S \rightarrow T$) := $H_{q_{LM}}(T) - H_{q_{MT}}(T \mid S)$
Cross-Mutual Information measures models’ performance on the act of translation

Entropy:

\[
H(T) = \mathbb{E}_{t \sim p(T)}[-\log_2(p(t))] \quad \text{uncertainty}
\]

\[
H(T \mid S) = \mathbb{E}_{(s,t) \sim p(S,T)}[-\log_2(p(t \mid s))] \quad \text{uncertainty about } T \text{ after knowing } S
\]

\[
\text{MI}(S; T) = H(T) - H(T \mid S)
\]

- **mutual information**
 - uncertainty about \(T \) **a priori**
 - uncertainty about \(T \) **after knowing** \(S \)
- **how much knowing** \(S \) **reduced uncertainty** about \(T \)

Cross-Entropy:

\[
H_q(T) = \mathbb{E}_{t \sim p(T)}[-\log_2(q(t))] \quad \text{how surprised is model } q \text{ in reality } p?
\]

\[
H_q(T \mid S) = \mathbb{E}_{(s,t) \sim p(S,T)}[-\log_2(q(t \mid s))]
\]

XMI

\[
\text{XMI}(S \rightarrow T) := H_{q_{LM}}(T) - H_{q_{MT}}(T \mid S)
\]
Cross-Mutual Information measures models’ performance on the act of translation

Entropy:

\[
H(T) = \mathbb{E}_{t \sim p(T)}[-\log_2(p(t))] \quad \text{uncertainty}
\]

\[
H(T \mid S) = \mathbb{E}_{(s,t) \sim p(S,T)}[-\log_2(p(t \mid s))] \quad \text{uncertainty about } T \text{ given } S
\]

Mutual Information:

\[
\text{MI}(S; T) = H(T) - H(T \mid S)
\]

- mutual information between S and T
- uncertainty about T a priori
- uncertainty about T after knowing S
- how much knowing S reduced uncertainty about T

Cross-Entropy:

\[
H_q(T) = \mathbb{E}_{t \sim p(T)}[-\log_2(q(t))] \quad \text{how surprised is model } q \text{ in reality } p?
\]

\[
H_q(T \mid S) = \mathbb{E}_{(s,t) \sim p(S,T)}[-\log_2(q(t \mid s))]
\]

XMI(S \rightarrow T):

\[
\text{XMI}(S \rightarrow T) := H_{q_{LM}}(T) - H_{q_{MT}}(T \mid S)
\]
Experiments
Experiments

Setup

• **Data**: Fully 21-parallel subset of Europarl

• **Models**:
 • 20 [○ → en] Transformers
 • 20 [en → ○] Transformers
Experiments

Setup

- **Data**: Fully 21-parallel subset of Europarl
- **Models**:
 - 20 [● → en] Transformers
 - 20 [en → ●] Transformers

Results

- For fixed target, BLEU and XMI correlate well! ✓
Experiments

Setup

- **Data**: Fully 21-parallel subset of Europarl
- **Models**:
 - 20 \([\circ \rightarrow \text{en}]\) Transformers
 - 20 \([\text{en} \rightarrow \circ]\) Transformers

Results

- For fixed target, BLEU and XMI correlate well! ✓
- Check our paper for more correlations
It’s Easier to Translate *out of* English than *into* it!
It’s Easier to Translate *out of* English than *into* it!

en-fi is easier than fi-en!
It’s Easier to Translate \textit{out of} English than \textit{into} it!

\textbf{en- – is easier than -en!}
Correlations with XMI?

The usual: type-token ratio...
but on the source side!

<table>
<thead>
<tr>
<th>Spearman’s ρ</th>
<th>Metric</th>
<th>$\emptyset \rightarrow \text{en}$</th>
<th>$\text{en} \rightarrow \emptyset$</th>
<th>both</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MCC$_{\text{src}}$</td>
<td>nope</td>
<td>nope</td>
<td>maybe?</td>
</tr>
<tr>
<td></td>
<td>MCC$_{\text{tgt}}$</td>
<td>nope</td>
<td>nope</td>
<td>maybe?</td>
</tr>
<tr>
<td></td>
<td>ADL$_{\text{src}}$</td>
<td>nope</td>
<td>nope</td>
<td>nope</td>
</tr>
<tr>
<td></td>
<td>ADL$_{\text{tgt}}$</td>
<td>nope</td>
<td>nope</td>
<td>maybe?</td>
</tr>
<tr>
<td></td>
<td>HPE-mean$_{\text{src}}$</td>
<td>nope</td>
<td>nope</td>
<td>maybe?</td>
</tr>
<tr>
<td></td>
<td>HPE-mean$_{\text{tgt}}$</td>
<td>nope</td>
<td>nope</td>
<td>maybe?</td>
</tr>
<tr>
<td>Mielke et al. (2019)</td>
<td>genetic</td>
<td>nope</td>
<td>nope</td>
<td>nope</td>
</tr>
<tr>
<td></td>
<td>syntactic</td>
<td>nope</td>
<td>nope</td>
<td>nope</td>
</tr>
<tr>
<td></td>
<td>featural</td>
<td>nope</td>
<td>nope</td>
<td>nope</td>
</tr>
<tr>
<td></td>
<td>phonological</td>
<td>nope</td>
<td>nope</td>
<td>nope</td>
</tr>
<tr>
<td></td>
<td>inventory</td>
<td>nope</td>
<td>nope</td>
<td>nope</td>
</tr>
<tr>
<td></td>
<td>geographic</td>
<td>nope</td>
<td>nope</td>
<td>nope</td>
</tr>
<tr>
<td>Lin et al. (2019)</td>
<td>word number ratio</td>
<td>maybe?</td>
<td>nope</td>
<td>maybe?</td>
</tr>
<tr>
<td></td>
<td>TTR$_{\text{src}}$</td>
<td>maybe?</td>
<td>–</td>
<td>-0.51</td>
</tr>
<tr>
<td></td>
<td>TTR$_{\text{tgt}}$</td>
<td>–</td>
<td>nope</td>
<td>maybe?</td>
</tr>
<tr>
<td></td>
<td>d_{TTR}</td>
<td>maybe?</td>
<td>nope</td>
<td>-0.47</td>
</tr>
<tr>
<td>Lin et al. (2019)</td>
<td>word overlap ratio</td>
<td>nope</td>
<td>nope</td>
<td>nope</td>
</tr>
</tbody>
</table>
Where to go from here?
Where to go from here?

- Cross-mutual information (XMI)
Where to go from here?

• Cross-mutual information (XMI)
 • A metric for translation difficulties between *any* two directions
Where to go from here?

• Cross-mutual information (XMI)
 • A metric for translation difficulties between *any* two directions

• No linguistic correlations, but TTR... again
Where to go from here?

• Cross-mutual information (XMI)
 • A metric for translation difficulties between any two directions

• No linguistic correlations, but TTR... again
 • Let’s scale this up and evaluate more pairs!
Where to go from here?

• Cross-mutual information (XMI)
 • A metric for translation difficulties between *any* two directions

• No linguistic correlations, but TTR... again
 • Let’s scale this up and evaluate more pairs!
 • Let’s build better models!
Where to go from here?

• Cross-mutual information (XMI)
 • A metric for translation difficulties between any two directions

• No linguistic correlations, but TTR... again
 • Let’s scale this up and evaluate more pairs!
 • Let’s build better models!

Code available online at https://github.com/e-bug/nmt-difficulty