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Evaluation Matrix
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Is fi-en easier than en-f1?
We can’t tell based on BLEU!
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BLEU’s shortcomings for cross-linguistic comparisons
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BLEU’s shortcomings for cross-linguistic comparisons

BLEU is a precision-based metric

1. BLEU depends on tokenization and the notion of “word”

Example:
“I will have been programming” english
“Programlayacagim” turkish

—» More partial credit for English!

Remedy: Look at the likelihood

2. We are still measuring: difficulty of translation and generation
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Mutual Information expresses the act of translation

El’ltl’Opy: H(T) = [Eth(T)[—Ing(p(t))] uncertainty
H(T'[S) = E( j)ps,m[—1oga(p(r] 5))]

MIS;T)= H(T) — HT|S) | s,
\ ) T)

mutual information  ncertainty about T uncertainty about T came 10

between S and T - . ~ .
how much knowing § about T

Example: en-zh
H (iﬁq 1 ) uncertainty about “ii}”
uncertainty about “iffifff” after knowing its translation

how much easier it has become to predict “¥fiff”
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CrOSS'EntI'Opy: Hq(T) — [EtN (T)[—logz( (t))] how surprised is model q in reality p?

Hq(T| S) = [E(s,t)N (S,T>[—10g2( (¢]5))]

XMIS - T):=H, (T)-H, (T|S)

(1)
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Cross-Mutual Information measures models’ performance on the
act of translation

Elltl'OpyZ H(T) = [Eth(T)[—lng(p(t))] uncertainty

5

H(T|S) = [E(s,t)Np(S,T)[_logZ(p(t | 5))]

MI(S, T) — H(T) — H(T | S) intrinsic source/target language variation

H
H
- S) e & (T)
tual inf i uncertainty about 7' uncertainty about 7'
mutual information - ter ing
between S and T - apriort after knowing § B shared information

how much knowing S reduced uncertainty about 7

CrOSS'EntI'Opy: Hq(T) — [EtN (T)[—logz( (t))] how surprised is model q in reality p?

Hq(T| S) = [E(S,t)N (S,T>[—10g2( (¢]5))]

intrinsic source/target modeling difficulty

XMIS - T):=H, (T)-H, (T|S) . _ |

transfer difficulty
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Experiments
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guT captures more shared content —
Results 80 90 100 110
* For fixed target, BLEU and XMI correlate well! v XMI

« Check our paper for more correlations
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It's Easier to Translate out of English than into it!
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Correlations with XM1?

The usu al : type-tO ken rat|0 «««  Spearman’s p Metric L-sen en — i both
but on the source side! ey .
Mielke et al. (2019) ADLy )
ADL,,, maybe?
HPE-mean,. maybe?
HPE-mean,, maybe?
genetic
syntactic
) featural
Lin et al. (2019) ,
phonological
inventory
geographic
word number ratio maybe? maybe?
i i S maybe? - -0.51
Lin et al. (2019) TTRg, - maybe?
drrr maybe? -0.47
word overlap ratio
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Where to go from here?

« Cross-mutual information (XMI)
- A metric for translation difficulties between any two directions

* No linguistic correlations, but TTR... again

 Let’s scale this up and evaluate more pairs!
* Let’s build better models!

Code available online at hitps://github.com/e-bug/nmt-difficulty
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