It's Easier to Translate out of English than into it: Measuring Neural Translation Difficulty by Cross-Mutual Information

ACL 2020

Emanuele Bugliarello, Sabrina J. Mielke, Antonios Anastasopoulos, Ryan Cotterell, Naoaki Okazaki

Evaluation Matrix

Translations Resources Download Info Account

Evaluation Matrix

Translations
 Resources
 Download
 Info Account

Evaluation Matrix

Translation quality of best system for test set newstest2019

Translations Resources Download Info Account

BLEU's shortcomings for cross-linguistic comparisons

BLEU's shortcomings for cross-linguistic comparisons

BLEU is a precision-based metric

BLEU's shortcomings for cross-linguistic comparisons

BLEU is a precision-based metric

1. BLEU depends on tokenization and the notion of "word"!

BLEU's shortcomings for cross-linguistic comparisons

BLEU is a precision-based metric

1. BLEU depends on tokenization and the notion of "word"!

Example:
"I will have been programming" English
"Programlayacağım" Turkish

BLEU's shortcomings for cross-linguistic comparisons

BLEU is a precision-based metric

1. BLEU depends on tokenization and the notion of "word"!

Example:
"I will have been programming" English
"Programlayacağım" Turkish
\longrightarrow More partial credit for English!

BLEU's shortcomings for cross-linguistic comparisons

BLEU is a precision-based metric

1. BLEU depends on tokenization and the notion of "word"!

Example:
"I will have been programming" English
"Programlayacağım" Turkish
\longrightarrow More partial credit for English!
Remedy: Look at the likelihood

BLEU's shortcomings for cross-linguistic comparisons

BLEU is a precision-based metric

1. BLEU depends on tokenization and the notion of "word"!

Example:
"I will have been programming" English
"Programlayacağım" Turkish
\longrightarrow More partial credit for English!
Remedy: Look at the likelihood
2. We are still measuring: difficulty of translation and generation

Mutual Information expresses the act of translation

$$
\text { Entropy: } \begin{aligned}
& \mathrm{H}(T)=\mathbb{E}_{t \sim p(T)}\left[-\log _{2}(p(t))\right] \text { uncertainty } \\
& \mathrm{H}(T \mid S)=\mathbb{E}_{(s, t) \sim p(S, T)}\left[-\log _{2}(p(t \mid s))\right]
\end{aligned}
$$

Mutual Information expresses the act of translation

$$
\text { Entropy: } \begin{aligned}
& \mathrm{H}(T)=\mathbb{E}_{t \sim p(T)}\left[-\log _{2}(p(t))\right] \text { uncertainty } \\
& \mathrm{H}(T \mid S)=\mathbb{E}_{(s, t) \sim p(S, T)}\left[-\log _{2}(p(t \mid s))\right]
\end{aligned}
$$

$\mathrm{H}(T)$

uncertainty about T
a priori

Mutual Information expresses the act of translation

$$
\text { Entropy: } \begin{aligned}
& \mathrm{H}(T)=\mathbb{E}_{t \sim p(T)}\left[-\log _{2}(p(t))\right] \text { uncertainty } \\
& \mathrm{H}(T \mid S)=\mathbb{E}_{(s, t) \sim p(S, T)}\left[-\log _{2}(p(t \mid s))\right]
\end{aligned}
$$

$\mathrm{H}(T) \quad \mathrm{H}(T \mid S)$
uncertainty about T
a priori
uncertainty about T
after knowing S

Mutual Information expresses the act of translation

$$
\text { Entropy: } \begin{aligned}
& \mathrm{H}(T)=\mathbb{E}_{t \sim p(T)}\left[-\log _{2}(p(t))\right] \text { uncertainty } \\
& \mathrm{H}(T \mid S)=\mathbb{E}_{(s, t) \sim p(S, T)}\left[-\log _{2}(p(t \mid s))\right]
\end{aligned}
$$

$\mathrm{H}(T)-\mathrm{H}(T \mid S)$

uncertainty about T uncertainty about T

how much knowing S reduced uncertainty about T

Mutual Information expresses the act of translation

$$
\text { Entropy: } \begin{aligned}
& \mathrm{H}(T)=\mathbb{E}_{t \sim p(T)}\left[-\log _{2}(p(t))\right] \text { uncertainty } \\
& \mathrm{H}(T \mid S)=\mathbb{E}_{(s, t) \sim p(S, T)}\left[-\log _{2}(p(t \mid s))\right]
\end{aligned}
$$

$$
\operatorname{MI}(S ; T)=\mathrm{H}(T)-\mathrm{H}(T \mid S)
$$

mutual information
between S and T
uncertainty about $T \quad$ uncertainty about T
$\underbrace{\text { a priori after knowing } S}$ how much knowing S reduced uncertainty about T

Mutual Information expresses the act of translation

$$
\text { Entropy: } \begin{aligned}
& \mathrm{H}(T)=\mathbb{E}_{t \sim p(T)}\left[-\log _{2}(p(t))\right] \text { uncertainty } \\
& \mathrm{H}(T \mid S)=\mathbb{E}_{(s, t) \sim p(S, T)}\left[-\log _{2}(p(t \mid s))\right]
\end{aligned}
$$

$$
\operatorname{MI}(S ; T)=\mathrm{H}(T)-\mathrm{H}(T \mid S)
$$

mutual information
between S and T
uncertainty about T
uncertainty about T
\qquad how much knowing S reduced uncertainty about T

Mutual Information expresses the act of translation

$$
\text { Entropy: } \begin{aligned}
& \mathrm{H}(T)=\mathbb{E}_{t \sim p(T)}\left[-\log _{2}(p(t))\right] \text { uncertainty } \\
& \mathrm{H}(T \mid S)=\mathbb{E}_{(s, t) \sim p(S, T)}\left[-\log _{2}(p(t \mid s))\right]
\end{aligned}
$$

$$
\operatorname{MI}(S ; T)=\mathrm{H}(T)-\mathrm{H}(T \mid S)
$$

mutual information
between S and T
uncertainty about T uncertainty about T
 how much knowing S reduced uncertainty about T

Example: en-zh

Mutual Information expresses the act of translation

$$
\text { Entropy: } \begin{aligned}
& \mathrm{H}(T)=\mathbb{E}_{t \sim p(T)}\left[-\log _{2}(p(t))\right] \text { uncertainty } \\
& \mathrm{H}(T \mid S)=\mathbb{E}_{(s, t) \sim p(S, T)}\left[-\log _{2}(p(t \mid s))\right]
\end{aligned}
$$

$$
\operatorname{MI}(S ; T)=\mathrm{H}(T)-\mathrm{H}(T \mid S)
$$

mutual information
between S and T
uncertainty about T uncertainty about T
 how much knowing S reduced uncertainty about T

Example：en－zh
$\square \mathrm{H}$（谢谢）

Mutual Information expresses the act of translation

$$
\begin{array}{r}
\text { Entropy: } \mathrm{H}(T)=\mathbb{E}_{t \sim p(T)}\left[-\log _{2}(p(t))\right] \text { uncertainty } \\
\\
\mathrm{H}(T \mid S)=\mathbb{E}_{(s, t) \sim p(S, T)}\left[-\log _{2}(p(t \mid s))\right]
\end{array}
$$

$\operatorname{MI}(S ; T)=\mathrm{H}(T)-\mathrm{H}(T \mid S)$

mutual information
between S and T
uncertainty about $T \quad$ uncertainty about T
\qquad how much knowing S reduced uncertainty about T

Example：en－zh

H（谢谢 I Thanks）

Mutual Information expresses the act of translation

$$
\text { Entropy: } \begin{aligned}
& \mathrm{H}(T)=\mathbb{E}_{t \sim p(T)}\left[-\log _{2}(p(t))\right] \text { uncertainty } \\
& \mathrm{H}(T \mid S)=\mathbb{E}_{(s, t) \sim p(S, T)}\left[-\log _{2}(p(t \mid s))\right]
\end{aligned}
$$

$\operatorname{MI}(S ; T)=\mathrm{H}(T)-\mathrm{H}(T \mid S)$

mutual information
between S and T
uncertainty about $T \quad$ uncertainty about T
\qquad how much knowing S reduced uncertainty about T

Example：en－zh

H（谢谢 I Thanks）

MI（Thanks；钫谢）

Cross-Mutual Information measures models' performance on the act of translation

$$
\begin{array}{r}
\text { Entropy: } \mathrm{H}(T)=\mathbb{E}_{t \sim p(T)}\left[-\log _{2}(p(t))\right] \text { uncertainty } \\
\qquad H(T \mid S)=\mathbb{E}_{(s, t) \sim p(S, T)}\left[-\log _{2}(p(t \mid S))\right] \\
\underbrace{\operatorname{Mi}(S: T)}_{\begin{array}{c}
\text { mutual information } \\
\text { between } S \text { and } T
\end{array}} \underbrace{\text { how much knowing } S \text { reduced uncertainty about } T}_{\begin{array}{c}
\text { uncertainty about } T \\
\text { a priori }
\end{array}}
\end{array}
$$

Cross-Mutual Information measures models' performance on the act of translation

Entropy: $\mathrm{H}(T)=\mathbb{E}_{t \sim p(T)}\left[-\log _{2}(p(t))\right]$ uncertainty

$$
\mathrm{H}(T \mid S)=\mathbb{E}_{(s, t) \sim p(S, T)}\left[-\log _{2}(p(t \mid s))\right]
$$

how much knowing S reduced uncertainty about T

Cross-Entropy: $\mathrm{H}_{q}(T)=\mathbb{E}_{t \sim p(T)}\left[-\log _{2}(q(t))\right]$ how surprised is model q in reality p ?

$$
\mathrm{H}_{q}(T \mid S)=\mathbb{E}_{(s, t) \sim p(S, T)}\left[-\log _{2}(q(t \mid s))\right]
$$

Cross-Mutual Information measures models' performance on the act of translation

Entropy: $\mathrm{H}(T)=\mathbb{E}_{t \sim p(T)}\left[-\log _{2}(p(t))\right]$ uncertainty

$$
\text { how much knowing } S \text { reduced uncertainty about } T
$$

Cross-Entropy: $\mathrm{H}_{q}(T)=\mathbb{E}_{t \sim p(T)}\left[-\log _{2}(q(t))\right]$ how surprised is model q in reality p ?

$$
\mathrm{H}_{q}(T \mid S)=\mathbb{E}_{(s, t) \sim p(S, T)}\left[-\log _{2}(q(t \mid s))\right]
$$

$\operatorname{XMI}(S \rightarrow T):=H_{q_{L M}}(T)-H_{q_{M T}}(T \mid S)$

Cross-Mutual Information measures models' performance on the act of translation

Entropy: $\mathrm{H}(T)=\mathbb{E}_{t \sim p(T)}\left[-\log _{2}(p(t))\right]$ uncertainty

$$
\mathrm{H}(T \mid S)=\mathbb{E}_{(s, t) \sim p(S, T)}\left[-\log _{2}(p(t \mid s))\right]
$$

$\underbrace{\sim\left(T_{0}\right)}_{$| mutual information |
| :---: |
| between $S \text { and } T$ |$} \underbrace{\text { how much knowing } S \text { reduced uncertainty about } T}_{$| uncertainty about T |
| :---: |
| a priori |$}$

Cross-Entropy: $\mathrm{H}_{q}(T)=\mathbb{E}_{t \sim p(T)}\left[-\log _{2}(q(t))\right]$ how surprised is model q in reality p ?

$$
\mathrm{H}_{q}(T \mid S)=\mathbb{E}_{(s, t) \sim p(S, T)}\left[-\log _{2}(q(t \mid s))\right]
$$

$\operatorname{XMI}(S \rightarrow T):=H_{q_{L M}}(T)-H_{q_{M T}}(T \mid S)$

Cross-Mutual Information measures models' performance on the act of translation

Entropy: $\mathrm{H}(T)=\mathbb{E}_{t \sim p(T)}\left[-\log _{2}(p(t))\right]$ uncertainty

$$
\mathrm{H}(T \mid S)=\mathbb{E}_{(s, t) \sim p(S, T)}\left[-\log _{2}(p(t \mid s))\right]
$$

Cross-Entropy: $\mathrm{H}_{q}(T)=\mathbb{E}_{t \sim p(T)}\left[-\log _{2}(q(t))\right]$ how surprised is model q in reality p ?

$$
\mathrm{H}_{q}(T \mid S)=\mathbb{E}_{(s, t) \sim p(S, T)}\left[-\log _{2}(q(t \mid s))\right]
$$

$\operatorname{XMI}(S \rightarrow T):=H_{q_{L M}}(T)-H_{q_{M T}}(T \mid S)$

Experiments

Experiments

Setup

- Data: Fully 21-parallel subset of Europarl
- Models:
- $20[\circ \rightarrow$ en] Transformers
- 20 [en \rightarrow o] Transformers

Experiments

Setup

- Data: Fully 21-parallel subset of Europarl
- Models:
- 20 [$\circ \rightarrow$ en] Transformers
- 20 [en \rightarrow 。] Transformers

Results

- For fixed target, BLEU and XMI correlate well!

Experiments

Setup

- Data: Fully 21-parallel subset of Europarl
- Models:
- $20[0 \rightarrow$ en] Transformers
- 20 [en \rightarrow 。] Transformers

Results

- For fixed target, BLEU and XMI correlate well!

- Check our paper for more correlations

It's Easier to Translate out of English than into it!

It's Easier to Translate out of English than into it!

It's Easier to Translate out of English than into it!

Correlations with XMI?

| The usual: type-token ratio... but on the source side! | Spearman's ρ | Metric \|| | $\cdots \rightarrow$ en | en \rightarrow \% | both |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | Mielke et al. (2019) | $\mathrm{MCC}_{\text {src }}$ $\mathrm{MCC}_{\text {tgt }}$ $\mathrm{ADL}_{\text {src }}$ $\mathrm{ADL}_{\text {tgt }}$ HPE-mean $_{\text {src }}$ HPE-mean $_{\text {tgt }}$$\|$ | nope
 nope
 nope
 nope
 nope
 nope | nope
 nope
 nope
 nope
 nope
 nope | maybe?
 maybe?
 nope
 maybe?
 maybe?
 maybe? |
| | Lin et al. (2019) | genetic
 syntactic featural phonological inventory geographic | nope
 nope
 nope
 nope
 nope
 nope | nope
 nope
 nope
 nope
 nope
 nope | nope
 nope
 nope
 nope
 nope
 nope |
| | Lin et al. (2019) | word number ratio $\mathrm{TTR}_{\text {src }}$ $\mathrm{TTR}_{\mathrm{tgt}}$ d_{TTR} word overlap ratio | maybe?
 maybe?
 maybe?
 nope | nope
 -
 nope
 nope
 nope | $\begin{gathered} \text { maybe? } \\ -0.51 \\ \text { maybe? } \\ -0.47 \\ \text { nope } \end{gathered}$ |

Where to go from here?

Where to go from here?

- Cross-mutual information (XMI)

Where to go from here?

- Cross-mutual information (XMI)
- A metric for translation difficulties between any two directions

Where to go from here?

- Cross-mutual information (XMI)
- A metric for translation difficulties between any two directions
- No linguistic correlations, but TTR... again

Where to go from here?

- Cross-mutual information (XMI)
- A metric for translation difficulties between any two directions
- No linguistic correlations, but TTR... again
- Let's scale this up and evaluate more pairs!

Where to go from here?

- Cross-mutual information (XMI)
- A metric for translation difficulties between any two directions
- No linguistic correlations, but TTR... again
- Let's scale this up and evaluate more pairs!
- Let's build better models!

Where to go from here?

- Cross-mutual information (XMI)
- A metric for translation difficulties between any two directions
- No linguistic correlations, but TTR... again
- Let's scale this up and evaluate more pairs!
- Let's build better models!

Code available online at https://github.com/e-bug/nmt-difficulty

